DOI

Solar active regions (ARs) are the primary source of solar flares. There are plenty of studies where the statistical relationship between ARs magnetic field complexity and solar flares are shown. Usually, the complexity of ARs described with different numerical magnetic field parameters and characteristics calculated on top of them. Also, there is well known and widely adapted McIntosh classification scheme of sunspot groups, consists of three letters abbreviation. Solar Monitor’s flare prediction system’s based on this classification. Up to date, the classification is done manual once a day by the specialist. In this paper, we describe an automatic system based on convolutional neural networks. For neural network training, we used images from two big magnetogram databases (HMI and MDI images) covered together period from 1996 to the 2018 years. Our results show that the automated classification of Solar ARs is possible with a moderate success rate, which allows to use it in practical tasks.

Язык оригиналаанглийский
Название основной публикацииAdvances in Neural Computation, Machine Learning, and Cognitive Research III - Selected Papers from the XXI International Conference on Neuroinformatics, 2019
РедакторыBoris Kryzhanovsky, Witali Dunin-Barkowski, Vladimir Redko, Yury Tiumentsev
ИздательSpringer Nature
Страницы239-245
Число страниц7
ISBN (печатное издание)9783030304249
DOI
СостояниеОпубликовано - 2020
Событие21st International Conference on Neuroinformatics, 2019 - Dolgoprudny, Российская Федерация
Продолжительность: 7 окт 201911 окт 2019

Серия публикаций

НазваниеStudies in Computational Intelligence
Том856
ISSN (печатное издание)1860-949X
ISSN (электронное издание)1860-9503

конференция

конференция21st International Conference on Neuroinformatics, 2019
Страна/TерриторияРоссийская Федерация
ГородDolgoprudny
Период7/10/1911/10/19

    Предметные области Scopus

  • Искусственный интеллект

ID: 71884620