Standard

Decaying Solutions to the Diffraction Problem on a Semiinfinite Thin Kirchhoff Plate with Periodic Traction-Free-Edge. / Matveenko, S. G.

в: Journal of Mathematical Sciences (United States), Том 255, № 4, 01.06.2021, стр. 467-472.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Matveenko, SG 2021, 'Decaying Solutions to the Diffraction Problem on a Semiinfinite Thin Kirchhoff Plate with Periodic Traction-Free-Edge', Journal of Mathematical Sciences (United States), Том. 255, № 4, стр. 467-472. https://doi.org/10.1007/s10958-021-05385-4

APA

Vancouver

Author

Matveenko, S. G. / Decaying Solutions to the Diffraction Problem on a Semiinfinite Thin Kirchhoff Plate with Periodic Traction-Free-Edge. в: Journal of Mathematical Sciences (United States). 2021 ; Том 255, № 4. стр. 467-472.

BibTeX

@article{5e63de42a07846fcad666d9852e157a8,
title = "Decaying Solutions to the Diffraction Problem on a Semiinfinite Thin Kirchhoff Plate with Periodic Traction-Free-Edge",
abstract = "We study the problem describing the incidence of a plane wave on a semiinfinite thin Kirchhoff plate with periodic traction-free-edge. We prove that any perturbation of the plate boundary, except for straight cracks parallel to the boundary, generates a trapped mode provided that the angle of incidence is not zero.",
author = "Matveenko, {S. G.}",
year = "2021",
month = jun,
day = "1",
doi = "10.1007/s10958-021-05385-4",
language = "English",
volume = "255",
pages = "467--472",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - Decaying Solutions to the Diffraction Problem on a Semiinfinite Thin Kirchhoff Plate with Periodic Traction-Free-Edge

AU - Matveenko, S. G.

PY - 2021/6/1

Y1 - 2021/6/1

N2 - We study the problem describing the incidence of a plane wave on a semiinfinite thin Kirchhoff plate with periodic traction-free-edge. We prove that any perturbation of the plate boundary, except for straight cracks parallel to the boundary, generates a trapped mode provided that the angle of incidence is not zero.

AB - We study the problem describing the incidence of a plane wave on a semiinfinite thin Kirchhoff plate with periodic traction-free-edge. We prove that any perturbation of the plate boundary, except for straight cracks parallel to the boundary, generates a trapped mode provided that the angle of incidence is not zero.

UR - http://www.scopus.com/inward/record.url?scp=85105384814&partnerID=8YFLogxK

U2 - 10.1007/s10958-021-05385-4

DO - 10.1007/s10958-021-05385-4

M3 - Article

AN - SCOPUS:85105384814

VL - 255

SP - 467

EP - 472

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 126266659