Standard

De Branges spaces and Fock spaces. / Baranov, Anton; Bommier-Hato, Hélène.

в: Complex Variables and Elliptic Equations, Том 63, № 7-8, 03.08.2018, стр. 907-930.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Baranov, A & Bommier-Hato, H 2018, 'De Branges spaces and Fock spaces', Complex Variables and Elliptic Equations, Том. 63, № 7-8, стр. 907-930. https://doi.org/10.1080/17476933.2017.1409742

APA

Baranov, A., & Bommier-Hato, H. (2018). De Branges spaces and Fock spaces. Complex Variables and Elliptic Equations, 63(7-8), 907-930. https://doi.org/10.1080/17476933.2017.1409742

Vancouver

Baranov A, Bommier-Hato H. De Branges spaces and Fock spaces. Complex Variables and Elliptic Equations. 2018 Авг. 3;63(7-8):907-930. https://doi.org/10.1080/17476933.2017.1409742

Author

Baranov, Anton ; Bommier-Hato, Hélène. / De Branges spaces and Fock spaces. в: Complex Variables and Elliptic Equations. 2018 ; Том 63, № 7-8. стр. 907-930.

BibTeX

@article{f335c3c1b2514e999da3670abdbeb49c,
title = "De Branges spaces and Fock spaces",
abstract = "Relations between two classes of Hilbert spaces of entire functions, de Branges spaces and Fock-type spaces with nonradial weights, are studied. It is shown that any de Branges space can be realized as a Fock-type space with equivalent area norm, and several constructions of a representing weight are suggested. For some special classes of weights (e.g. weights depending on the imaginary part only) the corresponding de Branges spaces are explicitly described.",
keywords = "30D15, 30H10, 46E22, de Branges space, Fock space, Hardy space, Hermite–Biehler class, inner function, level set, Reproducing kernel Hilbert space",
author = "Anton Baranov and H{\'e}l{\`e}ne Bommier-Hato",
year = "2018",
month = aug,
day = "3",
doi = "10.1080/17476933.2017.1409742",
language = "English",
volume = "63",
pages = "907--930",
journal = "Complex Variables and Elliptic Equations",
issn = "1747-6933",
publisher = "Taylor & Francis",
number = "7-8",

}

RIS

TY - JOUR

T1 - De Branges spaces and Fock spaces

AU - Baranov, Anton

AU - Bommier-Hato, Hélène

PY - 2018/8/3

Y1 - 2018/8/3

N2 - Relations between two classes of Hilbert spaces of entire functions, de Branges spaces and Fock-type spaces with nonradial weights, are studied. It is shown that any de Branges space can be realized as a Fock-type space with equivalent area norm, and several constructions of a representing weight are suggested. For some special classes of weights (e.g. weights depending on the imaginary part only) the corresponding de Branges spaces are explicitly described.

AB - Relations between two classes of Hilbert spaces of entire functions, de Branges spaces and Fock-type spaces with nonradial weights, are studied. It is shown that any de Branges space can be realized as a Fock-type space with equivalent area norm, and several constructions of a representing weight are suggested. For some special classes of weights (e.g. weights depending on the imaginary part only) the corresponding de Branges spaces are explicitly described.

KW - 30D15

KW - 30H10

KW - 46E22

KW - de Branges space

KW - Fock space

KW - Hardy space

KW - Hermite–Biehler class

KW - inner function

KW - level set

KW - Reproducing kernel Hilbert space

UR - http://www.scopus.com/inward/record.url?scp=85037676274&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/branges-spaces-fock-spaces

U2 - 10.1080/17476933.2017.1409742

DO - 10.1080/17476933.2017.1409742

M3 - Article

AN - SCOPUS:85037676274

VL - 63

SP - 907

EP - 930

JO - Complex Variables and Elliptic Equations

JF - Complex Variables and Elliptic Equations

SN - 1747-6933

IS - 7-8

ER -

ID: 32722493