Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Krein-de Branges spectral theory establishes a correspondence between the class of differential operators called canonical Hamiltonian systems and measures on the real line with finite Poisson integral. We further develop this area by giving a description of canonical Hamiltonian systems whose spectral measures have logarithmic integral converging over the real line. This result can be viewed as a spectral version of the classical Szegô theorem in the theory of polynomials orthogonal on the unit circle. It extends the Krein-Wiener completeness theorem, a key fact in the prediction of stationary Gaussian processes.
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 1509-1556 |
| Число страниц | 48 |
| Журнал | Analysis and PDE |
| Том | 14 |
| Номер выпуска | 5 |
| DOI | |
| Состояние | Опубликовано - 2021 |
ID: 94393039