Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Cyclopermutohedron: geometry and topology. / Nekrasov, I.; Panina, G.; Zhukova, A.
в: European Journal of Mathematics, Том 2, № 3, 2016, стр. 835–852.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Cyclopermutohedron: geometry and topology
AU - Nekrasov, I.
AU - Panina, G.
AU - Zhukova, A.
PY - 2016
Y1 - 2016
N2 - The face poset of the permutohedron realizes the combinatorics of linearly ordered partitions of the finite set. Similarly, the cyclopermutohedron is a virtual polytope that realizes the combinatorics of cyclically ordered partitions of the finite set. In the paper we (a) prove that the volume of the cyclopermutohedron equals zero, and (b) compute the homology groups .
AB - The face poset of the permutohedron realizes the combinatorics of linearly ordered partitions of the finite set. Similarly, the cyclopermutohedron is a virtual polytope that realizes the combinatorics of cyclically ordered partitions of the finite set. In the paper we (a) prove that the volume of the cyclopermutohedron equals zero, and (b) compute the homology groups .
KW - Abel polynomial
KW - Discrete Morse theory
KW - Permutohedron
KW - Virtual polytope
U2 - 10.1007/s40879-016-0107-3
DO - 10.1007/s40879-016-0107-3
M3 - Article
VL - 2
SP - 835
EP - 852
JO - European Journal of Mathematics
JF - European Journal of Mathematics
SN - 2199-675X
IS - 3
ER -
ID: 7648673