Standard

Cyclopermutohedron: geometry and topology. / Nekrasov, I.; Panina, G.; Zhukova, A.

в: European Journal of Mathematics, Том 2, № 3, 2016, стр. 835–852.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Nekrasov, I, Panina, G & Zhukova, A 2016, 'Cyclopermutohedron: geometry and topology', European Journal of Mathematics, Том. 2, № 3, стр. 835–852. https://doi.org/10.1007/s40879-016-0107-3

APA

Vancouver

Author

Nekrasov, I. ; Panina, G. ; Zhukova, A. / Cyclopermutohedron: geometry and topology. в: European Journal of Mathematics. 2016 ; Том 2, № 3. стр. 835–852.

BibTeX

@article{f1e0fe507b564e90b6a58dfec3233437,
title = "Cyclopermutohedron: geometry and topology",
abstract = "The face poset of the permutohedron realizes the combinatorics of linearly ordered partitions of the finite set. Similarly, the cyclopermutohedron is a virtual polytope that realizes the combinatorics of cyclically ordered partitions of the finite set. In the paper we (a) prove that the volume of the cyclopermutohedron equals zero, and (b) compute the homology groups .",
keywords = "Abel polynomial, Discrete Morse theory, Permutohedron, Virtual polytope",
author = "I. Nekrasov and G. Panina and A. Zhukova",
year = "2016",
doi = "10.1007/s40879-016-0107-3",
language = "English",
volume = "2",
pages = "835–852",
journal = "European Journal of Mathematics",
issn = "2199-675X",
publisher = "Springer Nature",
number = "3",

}

RIS

TY - JOUR

T1 - Cyclopermutohedron: geometry and topology

AU - Nekrasov, I.

AU - Panina, G.

AU - Zhukova, A.

PY - 2016

Y1 - 2016

N2 - The face poset of the permutohedron realizes the combinatorics of linearly ordered partitions of the finite set. Similarly, the cyclopermutohedron is a virtual polytope that realizes the combinatorics of cyclically ordered partitions of the finite set. In the paper we (a) prove that the volume of the cyclopermutohedron equals zero, and (b) compute the homology groups .

AB - The face poset of the permutohedron realizes the combinatorics of linearly ordered partitions of the finite set. Similarly, the cyclopermutohedron is a virtual polytope that realizes the combinatorics of cyclically ordered partitions of the finite set. In the paper we (a) prove that the volume of the cyclopermutohedron equals zero, and (b) compute the homology groups .

KW - Abel polynomial

KW - Discrete Morse theory

KW - Permutohedron

KW - Virtual polytope

U2 - 10.1007/s40879-016-0107-3

DO - 10.1007/s40879-016-0107-3

M3 - Article

VL - 2

SP - 835

EP - 852

JO - European Journal of Mathematics

JF - European Journal of Mathematics

SN - 2199-675X

IS - 3

ER -

ID: 7648673