DOI

New concept of high-strain-rate processes in solids is developed using the nonlocal theory of nonequilibrium transport. The interdisciplinary theoretical approach is constructed on the base of nonequilibrium statistical mechanics and cybernetic physics proposes integral mathematical models accounting spatiotemporal correlations which give rise to the system structurization under dynamic external loading. Cybernetic methods are used to describe the system evolution according to the internal control. In the framework of the theory a general integral stress-strain relationship depending on the strain-rate and the external pulse duration describes both the elastic medium reaction to an external loading and a transition to plastic flow. The model shows the difference between the shock loading and continuous one which is growing with the loading strain-rate. Constructed on the integral relationship a model of elastic-plastic shock-induced wave changing its waveform during its propagation along a material, is able to describe all complex of the experimentally observed laws that cannot be explained in scope of the conventional continuous mechanics. Copyright 2016 (C) The Authors. Published by Elsevier B.V.

Язык оригиналаАнглийский
Название основной публикации21ST EUROPEAN CONFERENCE ON FRACTURE, (ECF21)
РедакторыF Iacoviello, L Susmel, D Firrao, G Ferro
Место публикацииItaly
ИздательElsevier
Страницы994-1001
Число страниц8
Том2
DOI
СостояниеОпубликовано - 2016
Событие21st European Conference on Fracture (ECF) - The Sheraton Catania Hotel & Conference Center, Catania, Италия
Продолжительность: 20 июн 201624 июн 2016
Номер конференции: 21
http://www.ecf21.eu/site/

Серия публикаций

НазваниеProcedia Structural Integrity
ИздательELSEVIER SCIENCE BV
Том2
ISSN (печатное издание)2452-3216

конференция

конференция21st European Conference on Fracture (ECF)
Сокращенное названиеECF
Страна/TерриторияИталия
ГородCatania
Период20/06/1624/06/16
Сайт в сети Internet

    Предметные области Scopus

  • Физика и астрономия (все)

ID: 13720096