Standard

COVARIANT DESCRIPTION OF PHASE SPACE DISTRIBUTIONS. / Drivotin, O. I.

в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Том 12, № 3, 2016, стр. 39-52.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Drivotin, OI 2016, 'COVARIANT DESCRIPTION OF PHASE SPACE DISTRIBUTIONS', ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Том. 12, № 3, стр. 39-52. https://doi.org/10.21638/11701/spbu10.2016.304

APA

Drivotin, O. I. (2016). COVARIANT DESCRIPTION OF PHASE SPACE DISTRIBUTIONS. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, 12(3), 39-52. https://doi.org/10.21638/11701/spbu10.2016.304

Vancouver

Drivotin OI. COVARIANT DESCRIPTION OF PHASE SPACE DISTRIBUTIONS. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2016;12(3):39-52. https://doi.org/10.21638/11701/spbu10.2016.304

Author

Drivotin, O. I. / COVARIANT DESCRIPTION OF PHASE SPACE DISTRIBUTIONS. в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2016 ; Том 12, № 3. стр. 39-52.

BibTeX

@article{3be6b3aa73794588b6127664c5bb318d,
title = "COVARIANT DESCRIPTION OF PHASE SPACE DISTRIBUTIONS",
abstract = "The concept of phase space for particles moving in the 4-dimensional space time is formulated. Definition of particle distribution density as differential form is given. The degree of the distribution density form may be different in various cases. The Liouville and the Vlasov equations are written in tensor form with use of such tensor operations as the Lie dragging and the Lie derivative. The presented approach is valid in both non-relativistic and relativistic cases. It should be emphasized that this approach does not include the concepts of phase volume and distribution function. The covariant approach allows using arbitrary systems of coordinates for description of the particle distribution. In some cases, making use of special coordinates grants the possibility to construct analytical solutions. Besides, such an approach is convenient for description of degenerate distributions, for example, of the Kapchinsky-Vladimirsky distribution, which is well-known in the theory of charged particle beams. It can be also applied for description of particle distributions in curved space time. Refs 25.",
keywords = "Liouville equation, Vlasov equation, phase space, phase density, particle distribution density, self-consistent distribution, degenerate distribution, уравнение Лиувилля, Уравнение Власова, фазовое пространство, фазовая плотность, плотность распределения частиц, самосогласованное распределение, вырожденное распределение",
author = "Drivotin, {O. I.}",
year = "2016",
doi = "10.21638/11701/spbu10.2016.304",
language = "English",
volume = "12",
pages = "39--52",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "3",

}

RIS

TY - JOUR

T1 - COVARIANT DESCRIPTION OF PHASE SPACE DISTRIBUTIONS

AU - Drivotin, O. I.

PY - 2016

Y1 - 2016

N2 - The concept of phase space for particles moving in the 4-dimensional space time is formulated. Definition of particle distribution density as differential form is given. The degree of the distribution density form may be different in various cases. The Liouville and the Vlasov equations are written in tensor form with use of such tensor operations as the Lie dragging and the Lie derivative. The presented approach is valid in both non-relativistic and relativistic cases. It should be emphasized that this approach does not include the concepts of phase volume and distribution function. The covariant approach allows using arbitrary systems of coordinates for description of the particle distribution. In some cases, making use of special coordinates grants the possibility to construct analytical solutions. Besides, such an approach is convenient for description of degenerate distributions, for example, of the Kapchinsky-Vladimirsky distribution, which is well-known in the theory of charged particle beams. It can be also applied for description of particle distributions in curved space time. Refs 25.

AB - The concept of phase space for particles moving in the 4-dimensional space time is formulated. Definition of particle distribution density as differential form is given. The degree of the distribution density form may be different in various cases. The Liouville and the Vlasov equations are written in tensor form with use of such tensor operations as the Lie dragging and the Lie derivative. The presented approach is valid in both non-relativistic and relativistic cases. It should be emphasized that this approach does not include the concepts of phase volume and distribution function. The covariant approach allows using arbitrary systems of coordinates for description of the particle distribution. In some cases, making use of special coordinates grants the possibility to construct analytical solutions. Besides, such an approach is convenient for description of degenerate distributions, for example, of the Kapchinsky-Vladimirsky distribution, which is well-known in the theory of charged particle beams. It can be also applied for description of particle distributions in curved space time. Refs 25.

KW - Liouville equation

KW - Vlasov equation

KW - phase space

KW - phase density

KW - particle distribution density

KW - self-consistent distribution

KW - degenerate distribution

KW - уравнение Лиувилля

KW - Уравнение Власова

KW - фазовое пространство

KW - фазовая плотность

KW - плотность распределения частиц

KW - самосогласованное распределение

KW - вырожденное распределение

UR - http://vestnik.spbu.ru/html16/s10/s10v3/04.pdf

U2 - 10.21638/11701/spbu10.2016.304

DO - 10.21638/11701/spbu10.2016.304

M3 - Article

VL - 12

SP - 39

EP - 52

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 3

ER -

ID: 39948289