Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Counterexamples for multi-parameter weighted paraproducts. / Mozolyako, Pavel; Psaromiligkos, Georgios; Volberg, Alexander.
в: Comptes Rendus Mathematique, Том 358, № 5, 01.01.2020, стр. 529-534.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Counterexamples for multi-parameter weighted paraproducts
AU - Mozolyako, Pavel
AU - Psaromiligkos, Georgios
AU - Volberg, Alexander
PY - 2020/1/1
Y1 - 2020/1/1
N2 - We build the plethora of counterexamples to bi-parameter two weight embedding theorems. Two weight one parameter embedding results (which is the same as results of boundedness of two weight classical paraproducts, or two weight Carleson embedding theorems) are well known since the works of Sawyer in the 80's. Bi-parameter case was considered by S. Y. A. Chang and R. Fefferman but only when underlying measure is Lebesgue measure. The embedding of holomorphic functions on bi-disc requires general input measure. In [9] we classified such embeddings if the output measure has tensor structure. In this note we give examples that without tensor structure requirement all results break down.
AB - We build the plethora of counterexamples to bi-parameter two weight embedding theorems. Two weight one parameter embedding results (which is the same as results of boundedness of two weight classical paraproducts, or two weight Carleson embedding theorems) are well known since the works of Sawyer in the 80's. Bi-parameter case was considered by S. Y. A. Chang and R. Fefferman but only when underlying measure is Lebesgue measure. The embedding of holomorphic functions on bi-disc requires general input measure. In [9] we classified such embeddings if the output measure has tensor structure. In this note we give examples that without tensor structure requirement all results break down.
UR - http://www.scopus.com/inward/record.url?scp=85095708176&partnerID=8YFLogxK
U2 - 10.5802/CRMATH.52
DO - 10.5802/CRMATH.52
M3 - Article
AN - SCOPUS:85095708176
VL - 358
SP - 529
EP - 534
JO - Comptes Rendus Mathematique
JF - Comptes Rendus Mathematique
SN - 1631-073X
IS - 5
ER -
ID: 119108991