Standard

Coulomb-driven energy boost of heavy ions for laser-plasma acceleration. / Braenzel, J.; Andreev, A. A.; Platonov, K.; Klingsporn, M.; Ehrentraut, L.; Sandner, W.; Schnürer, M.

в: Physical Review Letters, Том 114, № 12, 124801, 26.03.2015.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Braenzel, J, Andreev, AA, Platonov, K, Klingsporn, M, Ehrentraut, L, Sandner, W & Schnürer, M 2015, 'Coulomb-driven energy boost of heavy ions for laser-plasma acceleration', Physical Review Letters, Том. 114, № 12, 124801. https://doi.org/10.1103/PhysRevLett.114.124801

APA

Braenzel, J., Andreev, A. A., Platonov, K., Klingsporn, M., Ehrentraut, L., Sandner, W., & Schnürer, M. (2015). Coulomb-driven energy boost of heavy ions for laser-plasma acceleration. Physical Review Letters, 114(12), [124801]. https://doi.org/10.1103/PhysRevLett.114.124801

Vancouver

Braenzel J, Andreev AA, Platonov K, Klingsporn M, Ehrentraut L, Sandner W и пр. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration. Physical Review Letters. 2015 Март 26;114(12). 124801. https://doi.org/10.1103/PhysRevLett.114.124801

Author

Braenzel, J. ; Andreev, A. A. ; Platonov, K. ; Klingsporn, M. ; Ehrentraut, L. ; Sandner, W. ; Schnürer, M. / Coulomb-driven energy boost of heavy ions for laser-plasma acceleration. в: Physical Review Letters. 2015 ; Том 114, № 12.

BibTeX

@article{f3bf7bc7f7cc476cabe7bd13ee7b6dd1,
title = "Coulomb-driven energy boost of heavy ions for laser-plasma acceleration",
abstract = "An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×1019W/cm2. Highly charged gold ions with kinetic energies up to >200MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.",
author = "J. Braenzel and Andreev, {A. A.} and K. Platonov and M. Klingsporn and L. Ehrentraut and W. Sandner and M. Schn{\"u}rer",
year = "2015",
month = mar,
day = "26",
doi = "10.1103/PhysRevLett.114.124801",
language = "English",
volume = "114",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "12",

}

RIS

TY - JOUR

T1 - Coulomb-driven energy boost of heavy ions for laser-plasma acceleration

AU - Braenzel, J.

AU - Andreev, A. A.

AU - Platonov, K.

AU - Klingsporn, M.

AU - Ehrentraut, L.

AU - Sandner, W.

AU - Schnürer, M.

PY - 2015/3/26

Y1 - 2015/3/26

N2 - An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×1019W/cm2. Highly charged gold ions with kinetic energies up to >200MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

AB - An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×1019W/cm2. Highly charged gold ions with kinetic energies up to >200MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

UR - http://www.scopus.com/inward/record.url?scp=84925949751&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.114.124801

DO - 10.1103/PhysRevLett.114.124801

M3 - Article

C2 - 25860747

AN - SCOPUS:84925949751

VL - 114

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 12

M1 - 124801

ER -

ID: 9325363