Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Correlated Interball/ground-based observations of isolated substorm : The pseudobreakup phase. / Yahnin, A. G.; Sergeev, V. A.; Bösinger, T.; Sergienko, T. I.; Kornilov, A.; Borodkova, N. L.; Thomsen, M. F.; Belian, R. D.; Sauvaud, J. A.; Lutsenko, V. N.; Skalsky, A. A.
в: Annales Geophysicae, Том 19, № 7, 07.2001, стр. 687-698.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Correlated Interball/ground-based observations of isolated substorm
T2 - The pseudobreakup phase
AU - Yahnin, A. G.
AU - Sergeev, V. A.
AU - Bösinger, T.
AU - Sergienko, T. I.
AU - Kornilov, A.
AU - Borodkova, N. L.
AU - Thomsen, M. F.
AU - Belian, R. D.
AU - Sauvaud, J. A.
AU - Lutsenko, V. N.
AU - Skalsky, A. A.
PY - 2001/7
Y1 - 2001/7
N2 - We study the isolated substorm that occurred after a long quiet period, which showed all of the substorm signatures except for the first half hour of the expansion phase, which could be characterized as a pseudobreakup sequence, rather than a full-scale substorm onset. During the considered event, the substorm's instability leads to a current disruption, which starts at the near-Earth plasma sheet and then propagates tailward. Based on auroral observations, the analysis of geosynchronous plasma injections, and the plasma sheet observations at ~15 RE at the meridian of auroral substorm development we show that (1) before and probably during "pseudobreakup phase", the plasma sheet stayed cold and dense, (2) during the pseudobreakup phase, particle injections at 6.6 RE were only seen in unusually low energy components, and (3) the electron precipitation into the ionosphere was very soft. We conclude that the basic difference between pseudobreakups and "real" substorm activations was found in the low energy of all manifestations. We suggest that high density and low electron temperature in the plasma sheet are the reasons for low energization in the magnetic reconnection operated on closed field lines in the plasma sheet, as well as the weak field-aligned acceleration, as predicted by the Knight's relationship. The low Hall conductivity could then be the reason for the weak ground magnetic effects observed. This explanation suggests that the role of the ionospheric conductivity is "passive" as the plasma sheet, rather than the ionosphere, controls the development of the magnetospheric instability.
AB - We study the isolated substorm that occurred after a long quiet period, which showed all of the substorm signatures except for the first half hour of the expansion phase, which could be characterized as a pseudobreakup sequence, rather than a full-scale substorm onset. During the considered event, the substorm's instability leads to a current disruption, which starts at the near-Earth plasma sheet and then propagates tailward. Based on auroral observations, the analysis of geosynchronous plasma injections, and the plasma sheet observations at ~15 RE at the meridian of auroral substorm development we show that (1) before and probably during "pseudobreakup phase", the plasma sheet stayed cold and dense, (2) during the pseudobreakup phase, particle injections at 6.6 RE were only seen in unusually low energy components, and (3) the electron precipitation into the ionosphere was very soft. We conclude that the basic difference between pseudobreakups and "real" substorm activations was found in the low energy of all manifestations. We suggest that high density and low electron temperature in the plasma sheet are the reasons for low energization in the magnetic reconnection operated on closed field lines in the plasma sheet, as well as the weak field-aligned acceleration, as predicted by the Knight's relationship. The low Hall conductivity could then be the reason for the weak ground magnetic effects observed. This explanation suggests that the role of the ionospheric conductivity is "passive" as the plasma sheet, rather than the ionosphere, controls the development of the magnetospheric instability.
KW - Ionosphere (particle precipitation)
KW - Magneto
KW - Spheric physics (auroral phenomena; plasma sheet)
UR - http://www.scopus.com/inward/record.url?scp=26844458839&partnerID=8YFLogxK
U2 - 10.5194/angeo-19-687-2001
DO - 10.5194/angeo-19-687-2001
M3 - Article
VL - 19
SP - 687
EP - 698
JO - Annales Geophysicae
JF - Annales Geophysicae
SN - 0992-7689
IS - 7
ER -
ID: 36755864