Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике › Рецензирование
Cooperation Enforcing in Multistage Multicriteria Game : New Algorithm and Its Implementation. / Kuzyutin, Denis; Lipko, Ivan; Pankratova, Yaroslavna; Tantlevskij, Igor.
Frontiers of Dynamic Games: Game Theory and Management, St. Petersburg, 2019. ред. / Leon A. Petrosyan; Vladimir V. Mazalov; Nikolay A. Zenkevich. Birkhäuser Verlag AG, 2020. стр. 141-159 (Static and Dynamic Game Theory: Foundations and Applications).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике › Рецензирование
}
TY - CHAP
T1 - Cooperation Enforcing in Multistage Multicriteria Game
T2 - New Algorithm and Its Implementation
AU - Kuzyutin, Denis
AU - Lipko, Ivan
AU - Pankratova, Yaroslavna
AU - Tantlevskij, Igor
N1 - Funding Information: Acknowledgments We would like to thank the anonymous Reviewer for the valuable comments. The research of the first and the third author was funded by RFBR under the research project 18-00-00727 (18-00-00725). The research of the fourth author was funded by RFBR under the research project 18-00-00727 (18-00-00628).
PY - 2020
Y1 - 2020
N2 - To enforce the long-term cooperation in a multistage multicriteria game we use the imputation distribution procedure (IDP) based approach. We mainly focus on such useful properties of the IDP like “reward immediately after the move” assumption, time consistency inequality, efficiency and non-negativity constraint. To overcome the problem of negative payments along the optimal cooperative trajectory the novel refined A-incremental IDP is designed. We establish the properties of the proposed A-incremental payment schedule and provide an illustrative example to clarify how the algorithm works.
AB - To enforce the long-term cooperation in a multistage multicriteria game we use the imputation distribution procedure (IDP) based approach. We mainly focus on such useful properties of the IDP like “reward immediately after the move” assumption, time consistency inequality, efficiency and non-negativity constraint. To overcome the problem of negative payments along the optimal cooperative trajectory the novel refined A-incremental IDP is designed. We establish the properties of the proposed A-incremental payment schedule and provide an illustrative example to clarify how the algorithm works.
KW - Cooperative solution
KW - Dynamic game
KW - Imputation distribution procedure
KW - Multicriteria game
KW - Multistage game
KW - Shapley value
KW - Time consistency
UR - http://www.scopus.com/inward/record.url?scp=85095118761&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/4f72de62-a064-3102-943e-2f33c27175aa/
U2 - 10.1007/978-3-030-51941-4_10
DO - 10.1007/978-3-030-51941-4_10
M3 - Article in an anthology
AN - SCOPUS:85095118761
SN - 978-3-030-51940-7
T3 - Static and Dynamic Game Theory: Foundations and Applications
SP - 141
EP - 159
BT - Frontiers of Dynamic Games
A2 - Petrosyan, Leon A.
A2 - Mazalov, Vladimir V.
A2 - Zenkevich, Nikolay A.
PB - Birkhäuser Verlag AG
ER -
ID: 70926943