Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Convolution Equations on a Large Finite Interval with Symbols Having Power-Order Zeros or Poles. / Budylin, A. M.; Sokolov, S. V.
в: Journal of Mathematical Sciences (United States), Том 226, № 6, 01.11.2017, стр. 711-719.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Convolution Equations on a Large Finite Interval with Symbols Having Power-Order Zeros or Poles
AU - Budylin, A. M.
AU - Sokolov, S. V.
N1 - Publisher Copyright: © 2017, Springer Science+Business Media, LLC.
PY - 2017/11/1
Y1 - 2017/11/1
N2 - A class of convolution equations on a large expanding interval is considered. The equations are characterized by the fact that the symbol of the corresponding operator has zeros or poles of a noninteger power order in the dual variable, which leads to long-range influence. A power-order complete asymptotic expansion is found for the kernel of the inverse operator as the length of the interval tends to infinity.
AB - A class of convolution equations on a large expanding interval is considered. The equations are characterized by the fact that the symbol of the corresponding operator has zeros or poles of a noninteger power order in the dual variable, which leads to long-range influence. A power-order complete asymptotic expansion is found for the kernel of the inverse operator as the length of the interval tends to infinity.
UR - http://www.scopus.com/inward/record.url?scp=85031507104&partnerID=8YFLogxK
U2 - 10.1007/s10958-017-3560-8
DO - 10.1007/s10958-017-3560-8
M3 - Article
AN - SCOPUS:85031507104
VL - 226
SP - 711
EP - 719
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 6
ER -
ID: 9227100