DOI

We consider the asymptotic behavior of compact convex subsets W̃n of ℝd defined as the closed convex hulls of the ranges of independent and identically distributed (i.i.d.) random processes (Xi)1≤i≤n. Under a condition of regular variation on the law of the Xi's, we prove the weak convergence of the rescaled convex hulls W̃n as n → ∞ and analyze the structure and properties of the limit shape. We illustrate our results by several examples of regularly varying processes and show that, in contrast with the Gaussian setting, in many cases, the limit shape is a random polytope of ℝd.

Язык оригиналаанглийский
Страницы (с-по)150-161
Число страниц12
ЖурналJournal of Mathematical Sciences (United States)
Том199
Номер выпуска2
DOI
СостояниеОпубликовано - июн 2014

    Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

ID: 73459850