DOI

Abstract: We propose a method for constructing a perturbation theory with a finite radius of convergence for a rather wide class of quantum field models traditionally used to describe critical and near-critical behavior in problems in statistical physics. For the proposed convergent series, we use an instanton analysis to find the radius of convergence and also indicate a strategy for calculating their coefficients based on the diagrams in the standard (divergent) perturbation theory. We test the approach in the example of the standard stochastic dynamics A-model and a matrix model of the phase transition in a system of nonrelativistic fermions, where its application allows explaining the previously observed quasiuniversal behavior of the trajectories of a first-order phase transition.

Язык оригиналаанглийский
Страницы (с-по)1033-1045
Число страниц13
ЖурналTheoretical and Mathematical Physics(Russian Federation)
Том204
Номер выпуска2
DOI
СостояниеОпубликовано - 1 авг 2020

    Предметные области Scopus

  • Статистическая и нелинейная физика
  • Математическая физика

ID: 76334432