Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Convergence of trajectories and stability of fixed points in a modified Hegselmann - Krause model. / Пилюгин, Сергей Юрьевич; Князев, Николай Даниилович.
в: ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ, № 4, 12.2024, стр. 53-77.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Convergence of trajectories and stability of fixed points in a modified Hegselmann - Krause model
AU - Пилюгин, Сергей Юрьевич
AU - Князев, Николай Даниилович
PY - 2024/12
Y1 - 2024/12
N2 - In this paper, we study a modified Hegselmann - Krause model of opinion dynamics based on the bounded confidence principle.This model is formulated as a discontinuous and nonlinear dynamical system. At any time moment of the process of opinion formation,the operator of forming the next opinion of an agent is two-step; first, one takes the average of opinions of agents sharing similar opinions plus his/her own; in the second step, a regularization procedure is performed. A new regularization procedure is applied. We find conditions under which every trajectory tends to a fixed point of the system and study stability properties of fixed points.
AB - In this paper, we study a modified Hegselmann - Krause model of opinion dynamics based on the bounded confidence principle.This model is formulated as a discontinuous and nonlinear dynamical system. At any time moment of the process of opinion formation,the operator of forming the next opinion of an agent is two-step; first, one takes the average of opinions of agents sharing similar opinions plus his/her own; in the second step, a regularization procedure is performed. A new regularization procedure is applied. We find conditions under which every trajectory tends to a fixed point of the system and study stability properties of fixed points.
KW - Opinion dynamics, bounded confidence principle, Hegselmann - Krause model, convergence of trajectories, stability of fixed points
M3 - Article
SP - 53
EP - 77
JO - ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ
JF - ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ
SN - 1817-2172
IS - 4
ER -
ID: 126280597