Standard

Convergence of trajectories and stability of fixed points in a modified Hegselmann - Krause model. / Пилюгин, Сергей Юрьевич; Князев, Николай Даниилович.

в: ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ, № 4, 12.2024, стр. 53-77.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Пилюгин, СЮ & Князев, НД 2024, 'Convergence of trajectories and stability of fixed points in a modified Hegselmann - Krause model', ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ, № 4, стр. 53-77.

APA

Пилюгин, С. Ю., & Князев, Н. Д. (2024). Convergence of trajectories and stability of fixed points in a modified Hegselmann - Krause model. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ, (4), 53-77.

Vancouver

Пилюгин СЮ, Князев НД. Convergence of trajectories and stability of fixed points in a modified Hegselmann - Krause model. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ. 2024 Дек.;(4):53-77.

Author

Пилюгин, Сергей Юрьевич ; Князев, Николай Даниилович. / Convergence of trajectories and stability of fixed points in a modified Hegselmann - Krause model. в: ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ. 2024 ; № 4. стр. 53-77.

BibTeX

@article{0ddbabbf7b6f43cab5328103ed75c6b8,
title = "Convergence of trajectories and stability of fixed points in a modified Hegselmann - Krause model",
abstract = "In this paper, we study a modified Hegselmann - Krause model of opinion dynamics based on the bounded confidence principle.This model is formulated as a discontinuous and nonlinear dynamical system. At any time moment of the process of opinion formation,the operator of forming the next opinion of an agent is two-step; first, one takes the average of opinions of agents sharing similar opinions plus his/her own; in the second step, a regularization procedure is performed. A new regularization procedure is applied. We find conditions under which every trajectory tends to a fixed point of the system and study stability properties of fixed points.",
keywords = "Opinion dynamics, bounded confidence principle, Hegselmann - Krause model, convergence of trajectories, stability of fixed points",
author = "Пилюгин, {Сергей Юрьевич} and Князев, {Николай Даниилович}",
year = "2024",
month = dec,
language = "English",
pages = "53--77",
journal = "ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1817-2172",
publisher = "Электронный журнал {"}Дифференциальные уравнения и процессы управления{"}",
number = "4",

}

RIS

TY - JOUR

T1 - Convergence of trajectories and stability of fixed points in a modified Hegselmann - Krause model

AU - Пилюгин, Сергей Юрьевич

AU - Князев, Николай Даниилович

PY - 2024/12

Y1 - 2024/12

N2 - In this paper, we study a modified Hegselmann - Krause model of opinion dynamics based on the bounded confidence principle.This model is formulated as a discontinuous and nonlinear dynamical system. At any time moment of the process of opinion formation,the operator of forming the next opinion of an agent is two-step; first, one takes the average of opinions of agents sharing similar opinions plus his/her own; in the second step, a regularization procedure is performed. A new regularization procedure is applied. We find conditions under which every trajectory tends to a fixed point of the system and study stability properties of fixed points.

AB - In this paper, we study a modified Hegselmann - Krause model of opinion dynamics based on the bounded confidence principle.This model is formulated as a discontinuous and nonlinear dynamical system. At any time moment of the process of opinion formation,the operator of forming the next opinion of an agent is two-step; first, one takes the average of opinions of agents sharing similar opinions plus his/her own; in the second step, a regularization procedure is performed. A new regularization procedure is applied. We find conditions under which every trajectory tends to a fixed point of the system and study stability properties of fixed points.

KW - Opinion dynamics, bounded confidence principle, Hegselmann - Krause model, convergence of trajectories, stability of fixed points

M3 - Article

SP - 53

EP - 77

JO - ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1817-2172

IS - 4

ER -

ID: 126280597