The so-called structural methods for systems of partitioned ordinary differential equations studied by Olemskoy are considered. An ODE system partitioning is based on special structure of right-hand side dependencies on the unknown functions. The methods are generalization of Runge–Kutta–Nyström methods and as the latter are more efficient than classical Runge–Kutta schemes for a wide range of systems. Polynomial interpolants for structural methods that can be used for dense output and in standard approach to solve delay differential equations are constructed. The proposed methods take fewer stages than the existing most general continuous Runge–Kutta methods. The orders of the constructed methods are checked with constant step integration of test delay differential equations. Also the global error to computational costs ratios are compared for new and known methods by solving the problems with variable time-step.
Язык оригиналаанглийский
Название основной публикацииComputational Science and Its Applications – ICCSA 2017
Подзаголовок основной публикации17th International Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part II
Место публикацииCham
ИздательSpringer Nature
Страницы363-378
ISBN (электронное издание)978-3-319-62395-5
ISBN (печатное издание)978-3-319-62394-8
DOI
СостояниеОпубликовано - 2017
Событие17th International Conference on Computational Science and Its Applications, ICCSA 2017 - Trieste, Италия
Продолжительность: 2 июл 20175 июл 2017
Номер конференции: 17

Серия публикаций

НазваниеLecture Notes in Computer Science
ИздательSpringer Nature
Том10405
ISSN (печатное издание)0302-9743

конференция

конференция17th International Conference on Computational Science and Its Applications, ICCSA 2017
Сокращенное названиеICCSA 2017
Страна/TерриторияИталия
ГородTrieste
Период2/07/175/07/17

ID: 71300676