Standard

Continuous dependence of attractors on the shape of domain. / Babin, A. V.; Pilyugin, S. Yu.

в: Journal of Mathematical Sciences , Том 87, № 2, 1997, стр. 3304-3310.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Babin, AV & Pilyugin, SY 1997, 'Continuous dependence of attractors on the shape of domain', Journal of Mathematical Sciences , Том. 87, № 2, стр. 3304-3310. https://doi.org/10.1007/BF02355582

APA

Babin, A. V., & Pilyugin, S. Y. (1997). Continuous dependence of attractors on the shape of domain. Journal of Mathematical Sciences , 87(2), 3304-3310. https://doi.org/10.1007/BF02355582

Vancouver

Author

Babin, A. V. ; Pilyugin, S. Yu. / Continuous dependence of attractors on the shape of domain. в: Journal of Mathematical Sciences . 1997 ; Том 87, № 2. стр. 3304-3310.

BibTeX

@article{7b2b6aa0619741e0b0f3629a8d7b963f,
title = "Continuous dependence of attractors on the shape of domain",
abstract = "Let Ω0 be a bounded domain in ℝn, let G be a family of diffeomorphisms, and let ΩG = G(Ω 0) for G ∈ G. Denote by Et(G) the semigroup generated by a fixed parabolic PDE with Dirichlet boundary conditions on the boundary of ΩG. Let AG be the global attractor of E t(G). Conditions are given under which a generic diffeomorphism G ∈ G is a continuity point of the map G → AG.",
author = "Babin, {A. V.} and Pilyugin, {S. Yu}",
year = "1997",
doi = "10.1007/BF02355582",
language = "English",
volume = "87",
pages = "3304--3310",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - Continuous dependence of attractors on the shape of domain

AU - Babin, A. V.

AU - Pilyugin, S. Yu

PY - 1997

Y1 - 1997

N2 - Let Ω0 be a bounded domain in ℝn, let G be a family of diffeomorphisms, and let ΩG = G(Ω 0) for G ∈ G. Denote by Et(G) the semigroup generated by a fixed parabolic PDE with Dirichlet boundary conditions on the boundary of ΩG. Let AG be the global attractor of E t(G). Conditions are given under which a generic diffeomorphism G ∈ G is a continuity point of the map G → AG.

AB - Let Ω0 be a bounded domain in ℝn, let G be a family of diffeomorphisms, and let ΩG = G(Ω 0) for G ∈ G. Denote by Et(G) the semigroup generated by a fixed parabolic PDE with Dirichlet boundary conditions on the boundary of ΩG. Let AG be the global attractor of E t(G). Conditions are given under which a generic diffeomorphism G ∈ G is a continuity point of the map G → AG.

UR - http://www.scopus.com/inward/record.url?scp=53249119619&partnerID=8YFLogxK

U2 - 10.1007/BF02355582

DO - 10.1007/BF02355582

M3 - Article

AN - SCOPUS:53249119619

VL - 87

SP - 3304

EP - 3310

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 2

ER -

ID: 92249172