Standard

Constructive Description of Hardy–Sobolev Spaces on Strictly Pseudoconvex Domains. / Rotkevich, Aleksandr.

в: Journal of Geometric Analysis, Том 32, № 2, 41, 02.2022.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{45ef8736becf4601bf2f53420fd77b39,
title = "Constructive Description of Hardy–Sobolev Spaces on Strictly Pseudoconvex Domains",
abstract = "Let Ω⊂ Cn be a strictly pseudoconvex Runge domain with C2-smooth defining function, l∈ N, p∈ (1 , ∞). We prove that a holomorphic function f has derivatives of order l in Hp(Ω) if and only if there is a sequence {P2k} such that P2k is a polynomial of degree 2 k and ∑k=1∞22lk|f(z)-P2k(z)|2∈Lp(∂Ω).",
keywords = "Hardy–Sobolev spaces, Polynomial approximation, Pseudoanalytic continuation, Strictly pseudoconvex domains, INTEGRALS, THEOREM, Hardy-Sobolev spaces",
author = "Aleksandr Rotkevich",
note = "Publisher Copyright: {\textcopyright} 2021, Mathematica Josephina, Inc.",
year = "2022",
month = feb,
doi = "10.1007/s12220-021-00794-y",
language = "English",
volume = "32",
journal = "Journal of Geometric Analysis",
issn = "1050-6926",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - Constructive Description of Hardy–Sobolev Spaces on Strictly Pseudoconvex Domains

AU - Rotkevich, Aleksandr

N1 - Publisher Copyright: © 2021, Mathematica Josephina, Inc.

PY - 2022/2

Y1 - 2022/2

N2 - Let Ω⊂ Cn be a strictly pseudoconvex Runge domain with C2-smooth defining function, l∈ N, p∈ (1 , ∞). We prove that a holomorphic function f has derivatives of order l in Hp(Ω) if and only if there is a sequence {P2k} such that P2k is a polynomial of degree 2 k and ∑k=1∞22lk|f(z)-P2k(z)|2∈Lp(∂Ω).

AB - Let Ω⊂ Cn be a strictly pseudoconvex Runge domain with C2-smooth defining function, l∈ N, p∈ (1 , ∞). We prove that a holomorphic function f has derivatives of order l in Hp(Ω) if and only if there is a sequence {P2k} such that P2k is a polynomial of degree 2 k and ∑k=1∞22lk|f(z)-P2k(z)|2∈Lp(∂Ω).

KW - Hardy–Sobolev spaces

KW - Polynomial approximation

KW - Pseudoanalytic continuation

KW - Strictly pseudoconvex domains

KW - INTEGRALS

KW - THEOREM

KW - Hardy-Sobolev spaces

UR - http://www.scopus.com/inward/record.url?scp=85122327013&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/a2a284b9-571b-363a-a014-f63939c37e04/

U2 - 10.1007/s12220-021-00794-y

DO - 10.1007/s12220-021-00794-y

M3 - Article

AN - SCOPUS:85122327013

VL - 32

JO - Journal of Geometric Analysis

JF - Journal of Geometric Analysis

SN - 1050-6926

IS - 2

M1 - 41

ER -

ID: 91247726