Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Constructive Description of Hardy–Sobolev Spaces on Strictly Pseudoconvex Domains. / Rotkevich, Aleksandr.
в: Journal of Geometric Analysis, Том 32, № 2, 41, 02.2022.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Constructive Description of Hardy–Sobolev Spaces on Strictly Pseudoconvex Domains
AU - Rotkevich, Aleksandr
N1 - Publisher Copyright: © 2021, Mathematica Josephina, Inc.
PY - 2022/2
Y1 - 2022/2
N2 - Let Ω⊂ Cn be a strictly pseudoconvex Runge domain with C2-smooth defining function, l∈ N, p∈ (1 , ∞). We prove that a holomorphic function f has derivatives of order l in Hp(Ω) if and only if there is a sequence {P2k} such that P2k is a polynomial of degree 2 k and ∑k=1∞22lk|f(z)-P2k(z)|2∈Lp(∂Ω).
AB - Let Ω⊂ Cn be a strictly pseudoconvex Runge domain with C2-smooth defining function, l∈ N, p∈ (1 , ∞). We prove that a holomorphic function f has derivatives of order l in Hp(Ω) if and only if there is a sequence {P2k} such that P2k is a polynomial of degree 2 k and ∑k=1∞22lk|f(z)-P2k(z)|2∈Lp(∂Ω).
KW - Hardy–Sobolev spaces
KW - Polynomial approximation
KW - Pseudoanalytic continuation
KW - Strictly pseudoconvex domains
KW - INTEGRALS
KW - THEOREM
KW - Hardy-Sobolev spaces
UR - http://www.scopus.com/inward/record.url?scp=85122327013&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/a2a284b9-571b-363a-a014-f63939c37e04/
U2 - 10.1007/s12220-021-00794-y
DO - 10.1007/s12220-021-00794-y
M3 - Article
AN - SCOPUS:85122327013
VL - 32
JO - Journal of Geometric Analysis
JF - Journal of Geometric Analysis
SN - 1050-6926
IS - 2
M1 - 41
ER -
ID: 91247726