Standard

Constructing c-Optimal Designs for Polynomial Regression without an Intercept. / Melas, V. B. ; Shpilev, P. V. .

в: Vestnik St. Petersburg University: Mathematics, Том 53, № 2, 01.04.2020, стр. 223–231.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Melas, VB & Shpilev, PV 2020, 'Constructing c-Optimal Designs for Polynomial Regression without an Intercept', Vestnik St. Petersburg University: Mathematics, Том. 53, № 2, стр. 223–231. https://doi.org/10.1134/S1063454120020120

APA

Vancouver

Author

Melas, V. B. ; Shpilev, P. V. . / Constructing c-Optimal Designs for Polynomial Regression without an Intercept. в: Vestnik St. Petersburg University: Mathematics. 2020 ; Том 53, № 2. стр. 223–231.

BibTeX

@article{7e37f83213184703a636560585a62355,
title = "Constructing c-Optimal Designs for Polynomial Regression without an Intercept",
abstract = "Abstract: In this paper, we consider the problem of constructing c-optimal designs for polynomial regression without an intercept. The special case of c = f '(z) (i.e., the vector of derivatives of the regression functions at some point z is selected as vector c) is considered. The analytical results available in the literature are briefly reviewed. An effective numerical method for finding f '(z)-optimal designs in cases in which an analytical solution cannot be constructed is proposed.",
keywords = "c-оптимальные планы, f'(z)-оптимальные планы, планы, оптимальные для оценивания производной, полиномиальная регрессия без свободного члена, c-optimal designs, f '(z)-optimal designs, designs optimal for estimating the derivative, polynomial regression with no intercept, f '(z)-optimal designs",
author = "Melas, {V. B.} and Shpilev, {P. V.}",
note = "Publisher Copyright: {\textcopyright} 2020, Pleiades Publishing, Ltd.",
year = "2020",
month = apr,
day = "1",
doi = "10.1134/S1063454120020120",
language = "English",
volume = "53",
pages = "223–231",
journal = "Vestnik St. Petersburg University: Mathematics",
issn = "1063-4541",
publisher = "Pleiades Publishing",
number = "2",

}

RIS

TY - JOUR

T1 - Constructing c-Optimal Designs for Polynomial Regression without an Intercept

AU - Melas, V. B.

AU - Shpilev, P. V.

N1 - Publisher Copyright: © 2020, Pleiades Publishing, Ltd.

PY - 2020/4/1

Y1 - 2020/4/1

N2 - Abstract: In this paper, we consider the problem of constructing c-optimal designs for polynomial regression without an intercept. The special case of c = f '(z) (i.e., the vector of derivatives of the regression functions at some point z is selected as vector c) is considered. The analytical results available in the literature are briefly reviewed. An effective numerical method for finding f '(z)-optimal designs in cases in which an analytical solution cannot be constructed is proposed.

AB - Abstract: In this paper, we consider the problem of constructing c-optimal designs for polynomial regression without an intercept. The special case of c = f '(z) (i.e., the vector of derivatives of the regression functions at some point z is selected as vector c) is considered. The analytical results available in the literature are briefly reviewed. An effective numerical method for finding f '(z)-optimal designs in cases in which an analytical solution cannot be constructed is proposed.

KW - c-оптимальные планы

KW - f'(z)-оптимальные планы

KW - планы, оптимальные для оценивания производной

KW - полиномиальная регрессия без свободного члена

KW - c-optimal designs

KW - f '(z)-optimal designs

KW - designs optimal for estimating the derivative

KW - polynomial regression with no intercept

KW - f '(z)-optimal designs

UR - https://link.springer.com/article/10.1134/S1063454120020120

UR - https://elibrary.ru/item.asp?id=43294630

UR - http://www.scopus.com/inward/record.url?scp=85085872601&partnerID=8YFLogxK

U2 - 10.1134/S1063454120020120

DO - 10.1134/S1063454120020120

M3 - Article

VL - 53

SP - 223

EP - 231

JO - Vestnik St. Petersburg University: Mathematics

JF - Vestnik St. Petersburg University: Mathematics

SN - 1063-4541

IS - 2

ER -

ID: 71493787