Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
An integer n is said to be ternary if it is composed of three distinct odd primes. In this paper, we asymptotically count the number of ternary integers n ≤ x with the constituent primes satisfying various constraints. We apply our results to the study of the simplest class of (inverse) cyclotomic polynomials that can have coefficients that are greater than 1 in absolute value, namely to the nth (inverse) cyclotomic polynomials with ternary n. We show, for example, that the corrected Sister Beiter conjecture is true for a fraction ≥ 0.925 of ternary integers.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 407-431 |
Журнал | International Journal of Number Theory |
Том | 15 |
Номер выпуска | 2 |
Дата раннего онлайн-доступа | 27 сен 2018 |
DOI | |
Состояние | Опубликовано - 2019 |
Опубликовано для внешнего пользования | Да |
ID: 49819176