Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Connecting orbits of Lagrangian systems in non-stationary force field. / Ivanov, A. V.
в: Regular and Chaotic Dynamics, Том 21, № 5, 2016, стр. 510-521.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Connecting orbits of Lagrangian systems in non-stationary force field
AU - Ivanov, A. V.
PY - 2016
Y1 - 2016
N2 - We study connecting orbits of a natural Lagrangian system defined on a complete Riemannian manifold being subjected to action of a non-stationary force field with potential $U(q,t) = f(t)V(q)$. It is assumed that the factor $f(t)$ tends to $\infty$ as $t\to \pm\infty$ and vanishes at unique point $t_{0}\in \mathbb{R}$. Let $X_{+}$, $X_{-}$ denote the sets of isolated critical points of $V(x)$ at which $U(x,t)$ as a function of $x$ distinguishes its maximum for any fixed $t> t_{0}$ and $t
AB - We study connecting orbits of a natural Lagrangian system defined on a complete Riemannian manifold being subjected to action of a non-stationary force field with potential $U(q,t) = f(t)V(q)$. It is assumed that the factor $f(t)$ tends to $\infty$ as $t\to \pm\infty$ and vanishes at unique point $t_{0}\in \mathbb{R}$. Let $X_{+}$, $X_{-}$ denote the sets of isolated critical points of $V(x)$ at which $U(x,t)$ as a function of $x$ distinguishes its maximum for any fixed $t> t_{0}$ and $t
KW - connecting orbits
KW - homoclinic and heteroclinic orbits
KW - nonautonomous Lagrangian system
KW - variational method
U2 - 10.1134/S1560354716050026
DO - 10.1134/S1560354716050026
M3 - Article
VL - 21
SP - 510
EP - 521
JO - Regular and Chaotic Dynamics
JF - Regular and Chaotic Dynamics
SN - 1560-3547
IS - 5
ER -
ID: 7592393