DOI

Ordinary linear homogeneous second-order differential equations with polynomial coefficients including one in front of the second derivative are studied. Fundamental definitions for these equations: of s-rank of the singularity (different from Poincaré rank), of s-multisymbol of the equation, and of s-homotopic transformations are proposed. The generalization of Fuchs' theorem for confluent Fuchsian equations is proved. The tree structure of types of equations is shown, and the generalized confluence theorem is proved.

Язык оригиналаанглийский
Страницы (с-по)950-960
Число страниц11
ЖурналTheoretical and Mathematical Physics
Том104
Номер выпуска2
DOI
СостояниеОпубликовано - 1 янв 1995

    Предметные области Scopus

  • Статистическая и нелинейная физика
  • Математическая физика

ID: 36182781