DOI

Nonlinear differential systems with nonlinearities satisfying sector constraints and with constant delays are studied. Such systems belong to well-known class of Persidskii-type systems, and they are widely used for modeling automatic control systems and neural networks. With the aid of the Lyapunov direct method and original constructions of Lyapunov–Krasovskii functionals, we derive conditions of the stability preservation under discretization of the considered differential systems. The fulfilment of these conditions guarantees that the zero solutions of the corresponding difference systems are asymptotically stable for arbitrary values of delays. Moreover, estimates of the convergence rate of solutions are obtained. The proposed approaches are used for the stability analysis of a discrete-time model of population dynamics. An example is given to demonstrate the effectiveness of our results.

Язык оригиналаанглийский
Название основной публикацииNUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT II
Подзаголовок основной публикацииConference proceedings NUMTA 2019
РедакторыYaroslav D. Sergeyev, Dmitri E. Kvasov, Yaroslav D. Sergeyev, Dmitri E. Kvasov
ИздательSpringer Nature
Страницы271-279
Число страниц9
ISBN (печатное издание)9783030406158
DOI
СостояниеОпубликовано - 2020
Событие3rd Triennial International Conference and Summer School on Numerical Computations: Theory and Algorithms, NUMTA 2019 - Crotone, Италия
Продолжительность: 15 июн 201921 июн 2019

Серия публикаций

НазваниеLecture Notes in Computer Science
Том11974
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция3rd Triennial International Conference and Summer School on Numerical Computations: Theory and Algorithms, NUMTA 2019
Страна/TерриторияИталия
ГородCrotone
Период15/06/1921/06/19

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 52417330