Результаты исследований: Научные публикации в периодических изданиях › Обзорная статья › Рецензирование
Conditions for Cm-approximability of functions by solutions of elliptic equations. / Mazalov, M. Ya; Paramonov, P. V.; Fedorovskiy, K. Yu.
в: Russian Mathematical Surveys, Том 67, № 6, 2012, стр. 1023-1068.Результаты исследований: Научные публикации в периодических изданиях › Обзорная статья › Рецензирование
}
TY - JOUR
T1 - Conditions for Cm-approximability of functions by solutions of elliptic equations
AU - Mazalov, M. Ya
AU - Paramonov, P. V.
AU - Fedorovskiy, K. Yu
PY - 2012
Y1 - 2012
N2 - This paper is a survey of results obtained over the past 20-30 years in the qualitative theory of approximation of functions by holomorphic, harmonic, and polyanalytic functions (and, in particular, by corresponding polynomials) in the norms of Whitney-type spaces Cm on compact subsets of Euclidean spaces.
AB - This paper is a survey of results obtained over the past 20-30 years in the qualitative theory of approximation of functions by holomorphic, harmonic, and polyanalytic functions (and, in particular, by corresponding polynomials) in the norms of Whitney-type spaces Cm on compact subsets of Euclidean spaces.
KW - C-analytic and C-harmonic capacity
KW - C-approximation by holomorphic, harmonic, and polyanalytic functions
KW - Dirichlet problem
KW - Nevanlinna domains
KW - S-dimensional hausdorff content
KW - Vitushkin localization operator
UR - http://www.scopus.com/inward/record.url?scp=84875134339&partnerID=8YFLogxK
U2 - 10.1070/RM2012v067n06ABEH004817
DO - 10.1070/RM2012v067n06ABEH004817
M3 - Review article
AN - SCOPUS:84875134339
VL - 67
SP - 1023
EP - 1068
JO - Russian Mathematical Surveys
JF - Russian Mathematical Surveys
SN - 0036-0279
IS - 6
ER -
ID: 86669624