Standard

Conditions for Cm-approximability of functions by solutions of elliptic equations. / Mazalov, M. Ya; Paramonov, P. V.; Fedorovskiy, K. Yu.

в: Russian Mathematical Surveys, Том 67, № 6, 2012, стр. 1023-1068.

Результаты исследований: Научные публикации в периодических изданияхОбзорная статьяРецензирование

Harvard

Mazalov, MY, Paramonov, PV & Fedorovskiy, KY 2012, 'Conditions for Cm-approximability of functions by solutions of elliptic equations', Russian Mathematical Surveys, Том. 67, № 6, стр. 1023-1068. https://doi.org/10.1070/RM2012v067n06ABEH004817

APA

Vancouver

Author

Mazalov, M. Ya ; Paramonov, P. V. ; Fedorovskiy, K. Yu. / Conditions for Cm-approximability of functions by solutions of elliptic equations. в: Russian Mathematical Surveys. 2012 ; Том 67, № 6. стр. 1023-1068.

BibTeX

@article{23a88b488f2f4d139e6ed46d20dbe3cf,
title = "Conditions for Cm-approximability of functions by solutions of elliptic equations",
abstract = "This paper is a survey of results obtained over the past 20-30 years in the qualitative theory of approximation of functions by holomorphic, harmonic, and polyanalytic functions (and, in particular, by corresponding polynomials) in the norms of Whitney-type spaces Cm on compact subsets of Euclidean spaces.",
keywords = "C-analytic and C-harmonic capacity, C-approximation by holomorphic, harmonic, and polyanalytic functions, Dirichlet problem, Nevanlinna domains, S-dimensional hausdorff content, Vitushkin localization operator",
author = "Mazalov, {M. Ya} and Paramonov, {P. V.} and Fedorovskiy, {K. Yu}",
year = "2012",
doi = "10.1070/RM2012v067n06ABEH004817",
language = "English",
volume = "67",
pages = "1023--1068",
journal = "Russian Mathematical Surveys",
issn = "0036-0279",
publisher = "IOP Publishing Ltd.",
number = "6",

}

RIS

TY - JOUR

T1 - Conditions for Cm-approximability of functions by solutions of elliptic equations

AU - Mazalov, M. Ya

AU - Paramonov, P. V.

AU - Fedorovskiy, K. Yu

PY - 2012

Y1 - 2012

N2 - This paper is a survey of results obtained over the past 20-30 years in the qualitative theory of approximation of functions by holomorphic, harmonic, and polyanalytic functions (and, in particular, by corresponding polynomials) in the norms of Whitney-type spaces Cm on compact subsets of Euclidean spaces.

AB - This paper is a survey of results obtained over the past 20-30 years in the qualitative theory of approximation of functions by holomorphic, harmonic, and polyanalytic functions (and, in particular, by corresponding polynomials) in the norms of Whitney-type spaces Cm on compact subsets of Euclidean spaces.

KW - C-analytic and C-harmonic capacity

KW - C-approximation by holomorphic, harmonic, and polyanalytic functions

KW - Dirichlet problem

KW - Nevanlinna domains

KW - S-dimensional hausdorff content

KW - Vitushkin localization operator

UR - http://www.scopus.com/inward/record.url?scp=84875134339&partnerID=8YFLogxK

U2 - 10.1070/RM2012v067n06ABEH004817

DO - 10.1070/RM2012v067n06ABEH004817

M3 - Review article

AN - SCOPUS:84875134339

VL - 67

SP - 1023

EP - 1068

JO - Russian Mathematical Surveys

JF - Russian Mathematical Surveys

SN - 0036-0279

IS - 6

ER -

ID: 86669624