Standard

Computing the solution operators of symmetric hyperbolic systems of PDE. / Selivanova, Svetlana; Selivanov, Victor.

в: Journal of Universal Computer Science, Том 15, № 6, 24.07.2009, стр. 1337-1364.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Selivanova, S & Selivanov, V 2009, 'Computing the solution operators of symmetric hyperbolic systems of PDE', Journal of Universal Computer Science, Том. 15, № 6, стр. 1337-1364.

APA

Selivanova, S., & Selivanov, V. (2009). Computing the solution operators of symmetric hyperbolic systems of PDE. Journal of Universal Computer Science, 15(6), 1337-1364.

Vancouver

Selivanova S, Selivanov V. Computing the solution operators of symmetric hyperbolic systems of PDE. Journal of Universal Computer Science. 2009 Июль 24;15(6):1337-1364.

Author

Selivanova, Svetlana ; Selivanov, Victor. / Computing the solution operators of symmetric hyperbolic systems of PDE. в: Journal of Universal Computer Science. 2009 ; Том 15, № 6. стр. 1337-1364.

BibTeX

@article{22b4ddd5ae034a9e88e4803149c1b191,
title = "Computing the solution operators of symmetric hyperbolic systems of PDE",
abstract = "We study the computability properties of symmetric hyperbolic systems. Such systems first considered by K.O. Friedrichs can be used to describe a wide variety of physical processes. Using the difference equations approach, we prove computability of the operator that sends (for any fixed computable matrices A,B1,..., Bm satisfying certain conditions) any initial function π{variant} ∈ C p+1(Q, R n) (satisfying certain conditions), p ≥ 2, to the unique solution u ∈ C p(H, R n), where Q=[0, 1] m and H is the nonempty domain of correctness of thesystem. {\textcopyright} J.UCS.",
keywords = "Computability, Difference scheme, Finite-dimensional approximation, Hyperbolic system, Matrix pencil, Metric space, Norm, PDE, Stability",
author = "Svetlana Selivanova and Victor Selivanov",
year = "2009",
month = jul,
day = "24",
language = "English",
volume = "15",
pages = "1337--1364",
journal = "Journal of Universal Computer Science",
issn = "0948-695X",
publisher = "Technische Universitat Graz from Austria",
number = "6",

}

RIS

TY - JOUR

T1 - Computing the solution operators of symmetric hyperbolic systems of PDE

AU - Selivanova, Svetlana

AU - Selivanov, Victor

PY - 2009/7/24

Y1 - 2009/7/24

N2 - We study the computability properties of symmetric hyperbolic systems. Such systems first considered by K.O. Friedrichs can be used to describe a wide variety of physical processes. Using the difference equations approach, we prove computability of the operator that sends (for any fixed computable matrices A,B1,..., Bm satisfying certain conditions) any initial function π{variant} ∈ C p+1(Q, R n) (satisfying certain conditions), p ≥ 2, to the unique solution u ∈ C p(H, R n), where Q=[0, 1] m and H is the nonempty domain of correctness of thesystem. © J.UCS.

AB - We study the computability properties of symmetric hyperbolic systems. Such systems first considered by K.O. Friedrichs can be used to describe a wide variety of physical processes. Using the difference equations approach, we prove computability of the operator that sends (for any fixed computable matrices A,B1,..., Bm satisfying certain conditions) any initial function π{variant} ∈ C p+1(Q, R n) (satisfying certain conditions), p ≥ 2, to the unique solution u ∈ C p(H, R n), where Q=[0, 1] m and H is the nonempty domain of correctness of thesystem. © J.UCS.

KW - Computability

KW - Difference scheme

KW - Finite-dimensional approximation

KW - Hyperbolic system

KW - Matrix pencil

KW - Metric space

KW - Norm

KW - PDE

KW - Stability

UR - http://www.scopus.com/inward/record.url?scp=67650716923&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:67650716923

VL - 15

SP - 1337

EP - 1364

JO - Journal of Universal Computer Science

JF - Journal of Universal Computer Science

SN - 0948-695X

IS - 6

ER -

ID: 127086942