Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Computing the solution operators of symmetric hyperbolic systems of PDE. / Selivanova, Svetlana; Selivanov, Victor.
в: Journal of Universal Computer Science, Том 15, № 6, 24.07.2009, стр. 1337-1364.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Computing the solution operators of symmetric hyperbolic systems of PDE
AU - Selivanova, Svetlana
AU - Selivanov, Victor
PY - 2009/7/24
Y1 - 2009/7/24
N2 - We study the computability properties of symmetric hyperbolic systems. Such systems first considered by K.O. Friedrichs can be used to describe a wide variety of physical processes. Using the difference equations approach, we prove computability of the operator that sends (for any fixed computable matrices A,B1,..., Bm satisfying certain conditions) any initial function π{variant} ∈ C p+1(Q, R n) (satisfying certain conditions), p ≥ 2, to the unique solution u ∈ C p(H, R n), where Q=[0, 1] m and H is the nonempty domain of correctness of thesystem. © J.UCS.
AB - We study the computability properties of symmetric hyperbolic systems. Such systems first considered by K.O. Friedrichs can be used to describe a wide variety of physical processes. Using the difference equations approach, we prove computability of the operator that sends (for any fixed computable matrices A,B1,..., Bm satisfying certain conditions) any initial function π{variant} ∈ C p+1(Q, R n) (satisfying certain conditions), p ≥ 2, to the unique solution u ∈ C p(H, R n), where Q=[0, 1] m and H is the nonempty domain of correctness of thesystem. © J.UCS.
KW - Computability
KW - Difference scheme
KW - Finite-dimensional approximation
KW - Hyperbolic system
KW - Matrix pencil
KW - Metric space
KW - Norm
KW - PDE
KW - Stability
UR - http://www.scopus.com/inward/record.url?scp=67650716923&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:67650716923
VL - 15
SP - 1337
EP - 1364
JO - Journal of Universal Computer Science
JF - Journal of Universal Computer Science
SN - 0948-695X
IS - 6
ER -
ID: 127086942