Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Composition, sources, and geodynamic nature of giant batholiths in Central Asia : Evidence from the geochemistry and Nd isotopic characteristics of granitoids in the Khangai zonal magmatic area. / Yarmolyuk, V. V.; Kozlovsky, A. M.; Savatenkov, V. M.; Kovach, V. P.; Kozakov, I. K.; Kotov, A. B.; Lebedev, V. I.; Eenjin, G.
в: Petrology, Том 24, № 5, 01.09.2016, стр. 433-461.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Composition, sources, and geodynamic nature of giant batholiths in Central Asia
T2 - Evidence from the geochemistry and Nd isotopic characteristics of granitoids in the Khangai zonal magmatic area
AU - Yarmolyuk, V. V.
AU - Kozlovsky, A. M.
AU - Savatenkov, V. M.
AU - Kovach, V. P.
AU - Kozakov, I. K.
AU - Kotov, A. B.
AU - Lebedev, V. I.
AU - Eenjin, G.
PY - 2016/9/1
Y1 - 2016/9/1
N2 - Data on the composition, inner structure, and magma sources of giant batholith in the Central Asian Orogenic Belt are analyzed with reference to the Khangai batholith. The Khangai batholith was emplaced in the Late Permian–Early Triassic (270–240 Ma) and is the largest accumulations (>150000 km2) of granite plutons in central Mongolia. The plutons are dominated by granites of normal alkalinity and contain subalkaline granites and more rare alkaline granites. The batholith is hosted in the Khangai zonal magmatic area, which consists of the batholith itself and surrounding rift zones. The zones are made up of bimodal basalt–trachyte–comendite (pantellerite) or basalt-dominated (alkaline basalt) volcanic associations, whose intrusive rocks are dominated by syenite and granite, granosyenite, and leucogranite. Both the batholith and the rift zones were produced within the time span of 270–240 Ma. Although the rocks composing the batholith and its rift surroundings are different, they are related through a broad spectrum of transitional varieties, which suggests that that the mantle and crustal melts could interact at various scale when the magmatic area was produced. A model is suggested to explain how the geological structure of the magmatic area and the composition of the magmatic associations that make up its various zones were controlled by the interaction between a mantle plume and the lithospheric folded area. The mantle melts emplaced into the lower crust are thought to not only have been heat sources and thus induced melting but also have predetermined the variable geochemical and isotopic characteristics of the granitoids. In the marginal portions of the zonal area, the activity of the mantle plume triggered rifting associated with bimodal and alkaline granite magmatism. The formation of giant batholiths was typical of the evolution of the active continental margin of the Siberian paleocontinent in the Late Paleozoic and Early Mesozoic: the Khangai, Angara–Vitim, and Khentei batholiths were formed in this area within a relatively brief time span between 300 and 190Ma. The batholiths share certain features: they consist of granitoids of a broad compositional range, from tonalite and plagiogranite to granosyenite and rare-metal granites; and the batholiths were produced in relation to rifting processes that also formed rift magmatic zones in the surroundings of the batholiths. The large-scale and unusual batholith-forming processes are thought to have occurred when the active continental margin of the Late Paleozoic Siberian continent overlapped a number of hotspots in the Paleo- Asian Ocean. This resulted in the origin of a giant anorogenic magmatic province, which included batholiths, flood-basalt areas in Tarim and Junggar, and the Central Asian Rift System. The batholiths are structural elements of the latter and components of the zonal magmatic areas.
AB - Data on the composition, inner structure, and magma sources of giant batholith in the Central Asian Orogenic Belt are analyzed with reference to the Khangai batholith. The Khangai batholith was emplaced in the Late Permian–Early Triassic (270–240 Ma) and is the largest accumulations (>150000 km2) of granite plutons in central Mongolia. The plutons are dominated by granites of normal alkalinity and contain subalkaline granites and more rare alkaline granites. The batholith is hosted in the Khangai zonal magmatic area, which consists of the batholith itself and surrounding rift zones. The zones are made up of bimodal basalt–trachyte–comendite (pantellerite) or basalt-dominated (alkaline basalt) volcanic associations, whose intrusive rocks are dominated by syenite and granite, granosyenite, and leucogranite. Both the batholith and the rift zones were produced within the time span of 270–240 Ma. Although the rocks composing the batholith and its rift surroundings are different, they are related through a broad spectrum of transitional varieties, which suggests that that the mantle and crustal melts could interact at various scale when the magmatic area was produced. A model is suggested to explain how the geological structure of the magmatic area and the composition of the magmatic associations that make up its various zones were controlled by the interaction between a mantle plume and the lithospheric folded area. The mantle melts emplaced into the lower crust are thought to not only have been heat sources and thus induced melting but also have predetermined the variable geochemical and isotopic characteristics of the granitoids. In the marginal portions of the zonal area, the activity of the mantle plume triggered rifting associated with bimodal and alkaline granite magmatism. The formation of giant batholiths was typical of the evolution of the active continental margin of the Siberian paleocontinent in the Late Paleozoic and Early Mesozoic: the Khangai, Angara–Vitim, and Khentei batholiths were formed in this area within a relatively brief time span between 300 and 190Ma. The batholiths share certain features: they consist of granitoids of a broad compositional range, from tonalite and plagiogranite to granosyenite and rare-metal granites; and the batholiths were produced in relation to rifting processes that also formed rift magmatic zones in the surroundings of the batholiths. The large-scale and unusual batholith-forming processes are thought to have occurred when the active continental margin of the Late Paleozoic Siberian continent overlapped a number of hotspots in the Paleo- Asian Ocean. This resulted in the origin of a giant anorogenic magmatic province, which included batholiths, flood-basalt areas in Tarim and Junggar, and the Central Asian Rift System. The batholiths are structural elements of the latter and components of the zonal magmatic areas.
UR - http://www.scopus.com/inward/record.url?scp=84987916910&partnerID=8YFLogxK
U2 - 10.1134/S0869591116050064
DO - 10.1134/S0869591116050064
M3 - Article
AN - SCOPUS:84987916910
VL - 24
SP - 433
EP - 461
JO - Petrology
JF - Petrology
SN - 0869-5911
IS - 5
ER -
ID: 52350740