A weakened version of the Cutting Plane (CP) proof system with a restriction on the degree of falsity of intermediate inequalities was introduced by Goerdt. He proved an exponential lower bound for CP proofs with degree of falsity bounded by n/log2n+1 where n is the number of variables. Hirsch and Nikolenko strengthened this result by establishing a direct connection between CP and Resolution proofs. This result implies an exponential lower bound on the proof length of the Tseitin-Urquhart tautologies, when the degree of falsity is bounded by cn for some constant c. In this paper we generalize this result for extensions of Lovasz-Schrijver calculi (LS), namely for LSk+CPk proof systems introduced by Grigoriev et al. We show that any LSk+CPk proof with bounded degree of falsity can be transformed into a Res(k) proof. We also prove lower and upper bounds for the new system.

Язык оригиналаанглийский
Название основной публикацииTheory and Applications of Satisfiability Testing, SAT 2006 - 9th International Conference, Proceedings
ИздательSpringer Nature
Страницы11-21
Число страниц11
ISBN (печатное издание)3540372067, 9783540372066
СостояниеОпубликовано - 1 янв 2006
Событие9th International Conference on Theory and Applications of Satisfiability Testing, SAT 2006 - Seattle, WA, Соединенные Штаты Америки
Продолжительность: 12 авг 200615 авг 2006

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том4121 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция9th International Conference on Theory and Applications of Satisfiability Testing, SAT 2006
Страна/TерриторияСоединенные Штаты Америки
ГородSeattle, WA
Период12/08/0615/08/06

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 49824989