Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Let A ∈ {0, 1}n×n be a matrix with z zeroes and u ones and x be an n-dimensional vector of formal variables over a semigroup (S, ◦). How many semigroup operations are required to compute the linear operator Ax? As we observe in this paper, this problem contains as a special case the well-known range queries problem and has a rich variety of applications in such areas as graph algorithms, functional programming, circuit complexity, and others. It is easy to compute Ax using O(u) semigroup operations. The main question studied in this paper is: can Ax be computed using O(z) semigroup operations? We prove that in general this is not possible: there exists a matrix A ∈ {0, 1}n×n with exactly two zeroes in every row (hence z = 2n) whose complexity is Θ(nα(n)) where α(n) is the inverse Ackermann function. However, for the case when the semigroup is commutative, we give a constructive proof of an O(z) upper bound. This implies that in commutative settings, complements of sparse matrices can be processed as efficiently as sparse matrices (though the corresponding algorithms are more involved). Note that this covers the cases of Boolean and tropical semirings that have numerous applications, e.g., in graph theory. As a simple application of the presented linear-size construction, we show how to multiply two n × n matrices over an arbitrary semiring in O(n2) time if one of these matrices is a 0/1-matrix with O(n) zeroes (i.e., a complement of a sparse matrix).
Язык оригинала | английский |
---|---|
Название основной публикации | 30th International Symposium on Algorithms and Computation, ISAAC 2019 |
Редакторы | Pinyan Lu, Guochuan Zhang |
Издатель | Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing |
ISBN (электронное издание) | 9783959771306 |
DOI | |
Состояние | Опубликовано - дек 2019 |
Событие | 30th International Symposium on Algorithms and Computation, ISAAC 2019 - Shanghai, Китай Продолжительность: 8 дек 2019 → 11 дек 2019 |
Название | Leibniz International Proceedings in Informatics, LIPIcs |
---|---|
Том | 149 |
ISSN (печатное издание) | 1868-8969 |
конференция | 30th International Symposium on Algorithms and Computation, ISAAC 2019 |
---|---|
Страна/Tерритория | Китай |
Город | Shanghai |
Период | 8/12/19 → 11/12/19 |
ID: 97553307