Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Completeness and Riesz bases of reproducing kernels in model subspaces. / Baranov, Anton.
в: International Mathematics Research Notices, Том 2006, 81530, 05.12.2006.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Completeness and Riesz bases of reproducing kernels in model subspaces
AU - Baranov, Anton
PY - 2006/12/5
Y1 - 2006/12/5
N2 - We use the recent approach of N. Makarov and A. Poltoratski to give a criterion for completeness of systems of reproducing kernels in the model subspaces KΘ =H2 ⊖ΘH2 of the Hardy class H2 . As an application, we prove new results on stability of completeness with respect to small perturbations and obtain criteria for completeness in terms of certain densities. We also obtain a description of systems of reproducing kernels corresponding to real points which form a Riesz basis in a given model subspace generated by a meromorphic inner function Θ.
AB - We use the recent approach of N. Makarov and A. Poltoratski to give a criterion for completeness of systems of reproducing kernels in the model subspaces KΘ =H2 ⊖ΘH2 of the Hardy class H2 . As an application, we prove new results on stability of completeness with respect to small perturbations and obtain criteria for completeness in terms of certain densities. We also obtain a description of systems of reproducing kernels corresponding to real points which form a Riesz basis in a given model subspace generated by a meromorphic inner function Θ.
UR - http://www.scopus.com/inward/record.url?scp=33751544784&partnerID=8YFLogxK
U2 - 10.1155/IMRN/2006/81530
DO - 10.1155/IMRN/2006/81530
M3 - Article
AN - SCOPUS:33751544784
VL - 2006
JO - International Mathematics Research Notices
JF - International Mathematics Research Notices
SN - 1073-7928
M1 - 81530
ER -
ID: 32722000