Standard

Comparison of Four Methods for Processing Data on Exponential Decay. / Danilova, T. A.; Krylov, I. R.; Razumova, M. Yu.

в: Optics and Spectroscopy (English translation of Optika i Spektroskopiya), Том 88, № 3, 2000, стр. 327-333.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Danilova, TA, Krylov, IR & Razumova, MY 2000, 'Comparison of Four Methods for Processing Data on Exponential Decay', Optics and Spectroscopy (English translation of Optika i Spektroskopiya), Том. 88, № 3, стр. 327-333. https://doi.org/10.1134/1.626797

APA

Danilova, T. A., Krylov, I. R., & Razumova, M. Y. (2000). Comparison of Four Methods for Processing Data on Exponential Decay. Optics and Spectroscopy (English translation of Optika i Spektroskopiya), 88(3), 327-333. https://doi.org/10.1134/1.626797

Vancouver

Danilova TA, Krylov IR, Razumova MY. Comparison of Four Methods for Processing Data on Exponential Decay. Optics and Spectroscopy (English translation of Optika i Spektroskopiya). 2000;88(3):327-333. https://doi.org/10.1134/1.626797

Author

Danilova, T. A. ; Krylov, I. R. ; Razumova, M. Yu. / Comparison of Four Methods for Processing Data on Exponential Decay. в: Optics and Spectroscopy (English translation of Optika i Spektroskopiya). 2000 ; Том 88, № 3. стр. 327-333.

BibTeX

@article{4b1fde35665d4cf09ca3bd3b6337f3b0,
title = "Comparison of Four Methods for Processing Data on Exponential Decay",
abstract = "Using the decay of a single exponential function to a nonzero level as an example, the following numerical methods for determining lifetimes are considered: the least-squares method, the differentiation method, and two modifications of the method of moments. Domains of efficient application of one method or the other, depending on the form of the noise distribution, are determined on the basis of computer simulation in parameter space of the problem. For the Poisson noise distribution, a domain of parameters is found, where the error of determining the decay rate in the method of moments is smaller than in the least-squares method.",
author = "Danilova, {T. A.} and Krylov, {I. R.} and Razumova, {M. Yu}",
year = "2000",
doi = "10.1134/1.626797",
language = "English",
volume = "88",
pages = "327--333",
journal = "OPTICS AND SPECTROSCOPY",
issn = "0030-400X",
publisher = "Pleiades Publishing",
number = "3",

}

RIS

TY - JOUR

T1 - Comparison of Four Methods for Processing Data on Exponential Decay

AU - Danilova, T. A.

AU - Krylov, I. R.

AU - Razumova, M. Yu

PY - 2000

Y1 - 2000

N2 - Using the decay of a single exponential function to a nonzero level as an example, the following numerical methods for determining lifetimes are considered: the least-squares method, the differentiation method, and two modifications of the method of moments. Domains of efficient application of one method or the other, depending on the form of the noise distribution, are determined on the basis of computer simulation in parameter space of the problem. For the Poisson noise distribution, a domain of parameters is found, where the error of determining the decay rate in the method of moments is smaller than in the least-squares method.

AB - Using the decay of a single exponential function to a nonzero level as an example, the following numerical methods for determining lifetimes are considered: the least-squares method, the differentiation method, and two modifications of the method of moments. Domains of efficient application of one method or the other, depending on the form of the noise distribution, are determined on the basis of computer simulation in parameter space of the problem. For the Poisson noise distribution, a domain of parameters is found, where the error of determining the decay rate in the method of moments is smaller than in the least-squares method.

UR - http://www.scopus.com/inward/record.url?scp=21144439093&partnerID=8YFLogxK

U2 - 10.1134/1.626797

DO - 10.1134/1.626797

M3 - Article

VL - 88

SP - 327

EP - 333

JO - OPTICS AND SPECTROSCOPY

JF - OPTICS AND SPECTROSCOPY

SN - 0030-400X

IS - 3

ER -

ID: 5168663