Документы

DOI

Let R be any associative ring with 1, n > 3, and let A,B be two-sided ideals of R. In the present paper we show that the mixed commutator subgroup [E(n,R,A),E(n,R,B)] is generated as a group by the elements of the two following forms: 1) z_ij (ab,c) and z_ij (ba,c), 2) [t_ij (a), t_ji(b)], where 1<= i 6/= j <=n, a ∈ A, b ∈ B, c ∈ R. Moreover, for the second type of generators, it suffices to fix one pair of indices (i, j). This result is both stronger and more general than the previous results by Roozbeh Hazrat and the authors. In particular, it implies that for all associative rings one has the equality [E(n,R,A),E(n,R,B)] = [E(n,A),E(n,B)] and many further corollaries can be derived for rings subject to commutativity conditions.
Переведенное названиеЕще раз о взаимных коммутантах относительных и настоящих элементарных групп
Язык оригиналаанглийский
Страницы (с-по)339-348
Число страниц10
ЖурналJournal of Mathematical Sciences (United States)
Том251
Номер выпуска3
Дата раннего онлайн-доступа30 окт 2020
DOI
СостояниеОпубликовано - 1 дек 2020

    Предметные области Scopus

  • Математика (все)

    Области исследований

  • General linear group, elementary subgroup, Congruence subgroups, standard commutator formulae, unrelativised commutator formula, elementary generators

ID: 61526731