Standard

Commutator width of Chevalley groups over rings of stable rank 1. / Smolensky, Andrei.

в: Journal of Group Theory, Том 22, № 1, 01.2019, стр. 83-101.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Smolensky, Andrei. / Commutator width of Chevalley groups over rings of stable rank 1. в: Journal of Group Theory. 2019 ; Том 22, № 1. стр. 83-101.

BibTeX

@article{73cd3407300f40b89a4c583f9b118b47,
title = "Commutator width of Chevalley groups over rings of stable rank 1",
abstract = "It is shown that each element of the elementary Chevalley group of rank greater than 2 over a ring of stable rank 1 can be expressed as a product of few commutators.",
author = "Andrei Smolensky",
note = " Journal of Group Theory, Volume 22, Issue 1, Pages 83–101, ISSN (Online) 1435-4446, ISSN (Print) 1433-5883, DOI: https://doi.org/10.1515/jgth-2018-0035.",
year = "2019",
month = jan,
doi = "10.1515/jgth-2018-0035",
language = "English",
volume = "22",
pages = "83--101",
journal = "Journal of Group Theory",
issn = "1433-5883",
publisher = "De Gruyter",
number = "1",

}

RIS

TY - JOUR

T1 - Commutator width of Chevalley groups over rings of stable rank 1

AU - Smolensky, Andrei

N1 - Journal of Group Theory, Volume 22, Issue 1, Pages 83–101, ISSN (Online) 1435-4446, ISSN (Print) 1433-5883, DOI: https://doi.org/10.1515/jgth-2018-0035.

PY - 2019/1

Y1 - 2019/1

N2 - It is shown that each element of the elementary Chevalley group of rank greater than 2 over a ring of stable rank 1 can be expressed as a product of few commutators.

AB - It is shown that each element of the elementary Chevalley group of rank greater than 2 over a ring of stable rank 1 can be expressed as a product of few commutators.

UR - http://www.scopus.com/inward/record.url?scp=85054974576&partnerID=8YFLogxK

U2 - 10.1515/jgth-2018-0035

DO - 10.1515/jgth-2018-0035

M3 - Article

AN - SCOPUS:85054974576

VL - 22

SP - 83

EP - 101

JO - Journal of Group Theory

JF - Journal of Group Theory

SN - 1433-5883

IS - 1

ER -

ID: 38315157