DOI

Let F0 and F be perfect subsets of the complex plane ℂ. Assume that F0 ⊂ F and the set Ω = d e f F\ F0 is open. We say that a continuous function f : F → ℂ is an analytic continuation of a function f0 : F0 → ℂ if f is analytic on Ω and f|F0 = f0. In the paper, it is proved that if F is bounded, then the commutator Lipschitz seminorm of the analytic continuation f coincides with the commutator Lipschitz seminorm of f0. The same is true for unbounded F if some natural restrictions concerning the behavior of f at infinity are imposed.

Язык оригиналаанглийский
Страницы (с-по)543-551
Число страниц9
ЖурналJournal of Mathematical Sciences (United States)
Том215
Номер выпуска5
DOI
СостояниеОпубликовано - 1 июн 2016
Опубликовано для внешнего пользованияДа

    Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

ID: 87315430