Standard

Cohomology of Formal Modules over Local Fields. / Vostokov, S. V.; Nekrasov, I. I.

в: Mathematical Notes, Том 105, № 1-2, 01.01.2019, стр. 3-7.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Vostokov, S. V. ; Nekrasov, I. I. / Cohomology of Formal Modules over Local Fields. в: Mathematical Notes. 2019 ; Том 105, № 1-2. стр. 3-7.

BibTeX

@article{612123eca1a84345b3a54911b50f7c2e,
title = "Cohomology of Formal Modules over Local Fields",
abstract = "The structure of the first Galois cohomology groups for the group of points of a formal module in extensions of local fields is studied. A complete description for unramified extensions and classical formal group laws is obtained.",
keywords = "formal group law, formal module over a local field",
author = "Vostokov, {S. V.} and Nekrasov, {I. I.}",
note = "Vostokov, S.V., Nekrasov, I.I. Cohomology of Formal Modules over Local Fields. Math Notes 105, 3–7 (2019). https://doi.org/10.1134/S0001434619010012",
year = "2019",
month = jan,
day = "1",
doi = "10.1134/S0001434619010012",
language = "English",
volume = "105",
pages = "3--7",
journal = "Mathematical Notes",
issn = "0001-4346",
publisher = "Pleiades Publishing",
number = "1-2",

}

RIS

TY - JOUR

T1 - Cohomology of Formal Modules over Local Fields

AU - Vostokov, S. V.

AU - Nekrasov, I. I.

N1 - Vostokov, S.V., Nekrasov, I.I. Cohomology of Formal Modules over Local Fields. Math Notes 105, 3–7 (2019). https://doi.org/10.1134/S0001434619010012

PY - 2019/1/1

Y1 - 2019/1/1

N2 - The structure of the first Galois cohomology groups for the group of points of a formal module in extensions of local fields is studied. A complete description for unramified extensions and classical formal group laws is obtained.

AB - The structure of the first Galois cohomology groups for the group of points of a formal module in extensions of local fields is studied. A complete description for unramified extensions and classical formal group laws is obtained.

KW - formal group law

KW - formal module over a local field

UR - http://www.scopus.com/inward/record.url?scp=85064253597&partnerID=8YFLogxK

U2 - 10.1134/S0001434619010012

DO - 10.1134/S0001434619010012

M3 - Article

AN - SCOPUS:85064253597

VL - 105

SP - 3

EP - 7

JO - Mathematical Notes

JF - Mathematical Notes

SN - 0001-4346

IS - 1-2

ER -

ID: 51918107