DOI

The term 'hidden attractor' relates to a stable periodic, quasiperiodic or chaotic state whose basin of attraction does not overlap with the neighborhood of an unstable equilibrium point. Considering a three-dimensional oscillator system that does not allow for the existence of an equilibrium point, this paper describes the formation of several different coexisting sets of hidden attractors, including the simultaneous presence of a pair of coinciding quasiperiodic attractors and of two mutually symmetric chaotic attractors. We follow the dynamics of the system as a function of the basic oscillator frequency, describe the bifurcations through which hidden attractors of different type arise and disappear, and illustrate the form of the basins of attraction.

Язык оригиналаанглийский
Номер статьи125101
ЖурналJournal of Physics A: Mathematical and Theoretical
Том48
Номер выпуска12
DOI
СостояниеОпубликовано - 27 мар 2015

    Предметные области Scopus

  • Статистическая и нелинейная физика
  • Теория вероятности и статистика
  • Моделирование и симуляция
  • Математическая физика
  • Физика и астрономия (все)

ID: 86486028