DOI

The closed form integral representation for the projection onto the subspace spanned by bound states of the two-body Coulomb Hamiltonian is obtained. The projection operator onto the n2-dimensional subspace corresponding to the nth eigenvalue in the Coulomb discrete spectrum is also represented as the combination of Laguerre polynomials of nth and (n - 1)th order. The latter allows us to derive an analogue of the Christoffel-Darboux summation formula for the Laguerre polynomials. The representations obtained are believed to be helpful in solving the breakup problem in a system of three charged particles where the correct treatment of infinitely many bound states in two-body subsystems is one of the most difficult technical problems.

Язык оригиналаанглийский
Номер статьи019
Страницы (с-по)4767-4773
Число страниц7
ЖурналJournal of Physics B: Atomic, Molecular and Optical Physics
Том39
Номер выпуска22
DOI
СостояниеОпубликовано - 28 ноя 2006

    Предметные области Scopus

  • Атомная и молекулярная физика и оптика
  • Физика конденсатов

ID: 5076033