DOI

Saskatoon (52° N, 107°W) medium frequency (MF) radar data from 1979 to 1993 have been analyzed to investigate the climatology of irregular wind components in the height region 60-100 km. This component is usually treated in terms of internal gravity waves (IGW). Three different band-pass filters have been used to separate the intensities of IGWs having periods 0.2-2.5; 1.5-6 and 2-10 h, respectively. Height, seasonal and inter-annual variations of IGW intensities, anisotropy and predominant directions of propagation are investigated. Mean over 14 years’ seasonal variation of the intensity of long-period IGWs shows a dominant annual component with winter maximum and summer minimum. Seasonal variations of the intensity of short-period waves have a strong semi-annual component as well, which forms a secondary maximum in summer. Predominant azimuths of long-period IGWs are generally zonal, though they vary with season. For short-period IGWs, the predominant azimuth is closer to the meridional direction. Anisotropy of IGW intensity is larger in summer, winter and at lower altitudes. The IGW intensity shows apparent correlation with both solar and geomagnetic activity. In most cases, this correlation appears to be negative. The variations versus solar activity is larger for longer-period IGW. Possible reasons and consequences of the observed climatological variations of IGW intensity are discussed.

Язык оригиналаанглийский
Страницы (с-по)285-295
Число страниц11
ЖурналAnnales Geophysicae
Том13
Номер выпуска3
DOI
СостояниеОпубликовано - 31 мар 1995

    Предметные области Scopus

  • Астрономия и астрофизика
  • Геология
  • Наука об атмосфере
  • Планетоведение и науки о земле (разное)
  • Космические науки и планетоведение

ID: 87719173