DOI

The change point detection problem in the time series arises in a wide variety of fields. In some situations, we lack the necessary resources to apply complex techniques, so lightweight approaches are needed.In this study, we consider lightweight approaches to the change point detection problem, namely, classification-based barrier methods. We want to investigate the use of various classifiers and classification evaluation metrics for change point detection, so we are creating a framework that makes it easy to build methods from different components. To study a large number of constructed methods, we create a flexible benchmarking system that allows one to evaluate methods using different metrics.We conduct an empirical study of the methods, present the results and compare them with existing methods and with each other. Our implementation of the KNN based method shows high-quality results. However, we see potential in using at least one more tested classifier as well.
Язык оригиналаанглийский
Название основной публикации2025 37th Conference of Open Innovations Association (FRUCT)
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы213-220
Число страниц8
ISBN (электронное издание)978-952-65246-3-4
ISBN (печатное издание)9789526524634
DOI
СостояниеОпубликовано - 14 мая 2025
СобытиеThe 37th FRUCT conference: FRUCT37 - UiT The Arctic University of Norway, Kufstein, Австрия
Продолжительность: 14 мая 202516 мая 2025
https://www.fruct.org/conferences/37/registration/

Серия публикаций

НазваниеConference of Open Innovation Association, FRUCT

конференция

конференцияThe 37th FRUCT conference
Сокращенное названиеFRUCT37
Страна/TерриторияАвстрия
ГородKufstein
Период14/05/2516/05/25
Сайт в сети Internet

ID: 137266748