DOI

The group actions on the real line and circle are classified. It is proved that each minimal continuous action of a group on the circle is either a conjugate of an isometric action, or a finite cover of a proximal action. It is also shown that each minimal continuous action of a group on the real line either is conjugate to an isometric action, or is a proximal action, or is a cover of a proximal action on the circle. As a corollary, it is proved that a continuous action of a group on the circle either has a finite orbit, or is semiconjugate to a minimal action on the circle that is either isometric or proximal. As a consequence, a new proof of the Ghys–Margulis alternative is obtained.

Язык оригиналарусский
Страницы (с-по)279-296
Число страниц18
ЖурналSt. Petersburg Mathematical Journal
Том19
Номер выпуска2
DOI
СостояниеОпубликовано - 1 янв 2008

    Предметные области Scopus

  • Анализ
  • Алгебра и теория чисел
  • Прикладная математика

ID: 47487433