Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Classical and cubic Rashba effect in the presence of in-plane 4f magnetism at the iridium silicide surface of the antiferromagnet GdIr2Si2. / Schulz, S.; Vyazovskaya, A. Yu; Poelchen, G.; Generalov, A.; Güttler, M.; Mende, M.; Danzenbächer, S.; Otrokov, M. M.; Balasubramanian, T.; Polley, C.; Chulkov, E. V.; Laubschat, C.; Peters, M.; Kliemt, K.; Krellner, C.; Usachov, D. Yu; Vyalikh, D. V.
в: Physical Review B, Том 103, № 3, 035123, 15.01.2021.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Classical and cubic Rashba effect in the presence of in-plane 4f magnetism at the iridium silicide surface of the antiferromagnet GdIr2Si2
AU - Schulz, S.
AU - Vyazovskaya, A. Yu
AU - Poelchen, G.
AU - Generalov, A.
AU - Güttler, M.
AU - Mende, M.
AU - Danzenbächer, S.
AU - Otrokov, M. M.
AU - Balasubramanian, T.
AU - Polley, C.
AU - Chulkov, E. V.
AU - Laubschat, C.
AU - Peters, M.
AU - Kliemt, K.
AU - Krellner, C.
AU - Usachov, D. Yu
AU - Vyalikh, D. V.
N1 - Publisher Copyright: © 2021 American Physical Society.
PY - 2021/1/15
Y1 - 2021/1/15
N2 - We present a combined experimental and theoretical study of the two-dimensional electron states at the iridium-silicide surface of the antiferromagnet GdIr2Si2 above and below the Néel temperature. Using angle-resolved photoemission spectroscopy (ARPES) we find a significant spin-orbit splitting of the surface states in the paramagnetic phase. By means of ab initio density-functional-theory (DFT) calculations we establish that the surface electron states that reside in the projected band gap around the M¯ point exhibit very different spin structures which are governed by the conventional and the cubic Rashba effect. The latter is reflected in a triple spin winding, i.e., the surface electron spin reveals three complete rotations upon moving once around the constant energy contours. Below the Néel temperature, our ARPES measurements show an intricate photoemission intensity picture characteristic of a complex magnetic domain structure. The orientation of the domains, however, can be clarified from a comparative analysis of the ARPES data and their DFT modeling. To characterize a single magnetic domain picture, we resort to the calculations and scrutinize the interplay of the Rashba spin-orbit coupling field with the in-plane exchange field, provided by the ferromagnetically ordered 4f moments of the near-surface Gd layer.
AB - We present a combined experimental and theoretical study of the two-dimensional electron states at the iridium-silicide surface of the antiferromagnet GdIr2Si2 above and below the Néel temperature. Using angle-resolved photoemission spectroscopy (ARPES) we find a significant spin-orbit splitting of the surface states in the paramagnetic phase. By means of ab initio density-functional-theory (DFT) calculations we establish that the surface electron states that reside in the projected band gap around the M¯ point exhibit very different spin structures which are governed by the conventional and the cubic Rashba effect. The latter is reflected in a triple spin winding, i.e., the surface electron spin reveals three complete rotations upon moving once around the constant energy contours. Below the Néel temperature, our ARPES measurements show an intricate photoemission intensity picture characteristic of a complex magnetic domain structure. The orientation of the domains, however, can be clarified from a comparative analysis of the ARPES data and their DFT modeling. To characterize a single magnetic domain picture, we resort to the calculations and scrutinize the interplay of the Rashba spin-orbit coupling field with the in-plane exchange field, provided by the ferromagnetically ordered 4f moments of the near-surface Gd layer.
KW - PLANE
UR - http://www.scopus.com/inward/record.url?scp=85100302564&partnerID=8YFLogxK
U2 - 10.1103/physrevb.103.035123
DO - 10.1103/physrevb.103.035123
M3 - Article
AN - SCOPUS:85100302564
VL - 103
JO - Physical Review B-Condensed Matter
JF - Physical Review B-Condensed Matter
SN - 1098-0121
IS - 3
M1 - 035123
ER -
ID: 85410446