Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Chui’s conjecture in Bergman spaces. / Abakumov, Evgeny; Borichev, Alexander; Fedorovskiy, Konstantin.
в: Mathematische Annalen, Том 379, № 3-4, 04.2021, стр. 1507-1532.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Chui’s conjecture in Bergman spaces
AU - Abakumov, Evgeny
AU - Borichev, Alexander
AU - Fedorovskiy, Konstantin
N1 - Abakumov, E., Borichev, A. & Fedorovskiy, K. Chui’s conjecture in Bergman spaces. Math. Ann. 379, 1507–1532 (2021). https://proxy.library.spbu.ru:2060/10.1007/s00208-020-02114-1
PY - 2021/4
Y1 - 2021/4
N2 - We solve an analog of Chui’s conjecture on the simplest fractions (i.e., sums of Cauchy kernels with unit coefficients) in weighted (Hilbert) Bergman spaces. Namely, for a wide class of weights, we prove that for every N, the simplest fractions with N poles on the unit circle have minimal norm if and only if the poles are equispaced on the circle. We find sharp asymptotics of these norms. Furthermore, we describe the closure of the simplest fractions in weighted Bergman spaces, using an L2 version of Thompson’s theorem on dominated approximation by simplest fractions.
AB - We solve an analog of Chui’s conjecture on the simplest fractions (i.e., sums of Cauchy kernels with unit coefficients) in weighted (Hilbert) Bergman spaces. Namely, for a wide class of weights, we prove that for every N, the simplest fractions with N poles on the unit circle have minimal norm if and only if the poles are equispaced on the circle. We find sharp asymptotics of these norms. Furthermore, we describe the closure of the simplest fractions in weighted Bergman spaces, using an L2 version of Thompson’s theorem on dominated approximation by simplest fractions.
KW - APPROXIMATION
KW - POLYNOMIALS
KW - FIELDS
UR - http://www.scopus.com/inward/record.url?scp=85096331332&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/2dee0747-8598-3217-8586-bcd52878dfc2/
U2 - 10.1007/s00208-020-02114-1
DO - 10.1007/s00208-020-02114-1
M3 - Article
AN - SCOPUS:85096331332
VL - 379
SP - 1507
EP - 1532
JO - Mathematische Annalen
JF - Mathematische Annalen
SN - 0025-5831
IS - 3-4
ER -
ID: 86668495