Standard

Charged-particle pseudorapidity density at mid-rapidity in p-Pb collisions at root S-NN=8.16 TeV. / ALICE Collaboration.

в: European Physical Journal C, Том 79, № 4, 307, 04.04.2019.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

ALICE Collaboration. / Charged-particle pseudorapidity density at mid-rapidity in p-Pb collisions at root S-NN=8.16 TeV. в: European Physical Journal C. 2019 ; Том 79, № 4.

BibTeX

@article{27c18cd93eec43f5a125140208097084,
title = "Charged-particle pseudorapidity density at mid-rapidity in p-Pb collisions at root S-NN=8.16 TeV",
abstract = " The pseudorapidity density of charged particles, d N ch / d η, in p–Pb collisions has been measured at a centre-of-mass energy per nucleon–nucleon pair of sNN = 8.16 TeV at mid-pseudorapidity for non-single-diffractive events. The results cover 3.6 units of pseudorapidity, | η| < 1.8. The d N ch / d η value is 19.1 ± 0.7 at | η| < 0.5. This quantity divided by ⟨ N part ⟩ / 2 is 4.73 ± 0.20 , where ⟨ N part ⟩ is the average number of participating nucleons, is 9.5% higher than the corresponding value for p–Pb collisions at sNN = 5.02 TeV. Measurements are compared with models based on different mechanisms for particle production. All models agree within uncertainties with data in the Pb-going side, while HIJING overestimates, showing a symmetric behaviour, and EPOS underestimates the p-going side of the d N ch / d η distribution. Saturation-based models reproduce the distributions well for η> - 1.3. The d N ch / d η is also measured for different centrality estimators, based both on the charged-particle multiplicity and on the energy deposited in the Zero-Degree Calorimeters. A study of the implications of the large multiplicity fluctuations due to the small number of participants for systems like p–Pb in the centrality calculation for multiplicity-based estimators is discussed, demonstrating the advantages of determining the centrality with energy deposited near beam rapidity. ",
keywords = "AU COLLISIONS, MULTIPLICITY, DISTRIBUTIONS, DEPENDENCE, CENTRALITY",
author = "{ALICE Collaboration} and S. Acharya and Acosta, {F. T.} and D. Adamov{\'a} and Adhya, {S. P.} and A. Adler and J. Adolfsson and Aggarwal, {M. M.} and Rinella, {G. Aglieri} and M. Agnello and Z. Ahammed and S. Ahmad and Ahn, {S. U.} and S. Aiola and A. Akindinov and M. Al-Turany and Alam, {S. N.} and Albuquerque, {D. S.D.} and D. Aleksandrov and B. Alessandro and Alfanda, {H. M.} and Molina, {R. Alfaro} and Y. Ali and A. Alici and A. Alkin and J. Alme and T. Alt and L. Altenkamper and I. Altsybeev and Anaam, {M. N.} and C. Andrei and D. Andreou and Andrews, {H. A.} and A. Andronic and M. Angeletti and V. Anguelov and C. Anson and T. Anti{\v c}i{\'c} and F. Antinori and P. Antonioli and R. Anwar and N. Apadula and L. Aphecetche and H. Appelsh{\"a}user and A. Erokhin and G. Feofilov and V. Kovalenko and T. Lazareva and V. Vechernin and A. Zarochentsev and V. Zherebchevskii",
year = "2019",
month = apr,
day = "4",
doi = "10.1140/epjc/s10052-019-6801-9",
language = "English",
volume = "79",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - Charged-particle pseudorapidity density at mid-rapidity in p-Pb collisions at root S-NN=8.16 TeV

AU - ALICE Collaboration

AU - Acharya, S.

AU - Acosta, F. T.

AU - Adamová, D.

AU - Adhya, S. P.

AU - Adler, A.

AU - Adolfsson, J.

AU - Aggarwal, M. M.

AU - Rinella, G. Aglieri

AU - Agnello, M.

AU - Ahammed, Z.

AU - Ahmad, S.

AU - Ahn, S. U.

AU - Aiola, S.

AU - Akindinov, A.

AU - Al-Turany, M.

AU - Alam, S. N.

AU - Albuquerque, D. S.D.

AU - Aleksandrov, D.

AU - Alessandro, B.

AU - Alfanda, H. M.

AU - Molina, R. Alfaro

AU - Ali, Y.

AU - Alici, A.

AU - Alkin, A.

AU - Alme, J.

AU - Alt, T.

AU - Altenkamper, L.

AU - Altsybeev, I.

AU - Anaam, M. N.

AU - Andrei, C.

AU - Andreou, D.

AU - Andrews, H. A.

AU - Andronic, A.

AU - Angeletti, M.

AU - Anguelov, V.

AU - Anson, C.

AU - Antičić, T.

AU - Antinori, F.

AU - Antonioli, P.

AU - Anwar, R.

AU - Apadula, N.

AU - Aphecetche, L.

AU - Appelshäuser, H.

AU - Erokhin, A.

AU - Feofilov, G.

AU - Kovalenko, V.

AU - Lazareva, T.

AU - Vechernin, V.

AU - Zarochentsev, A.

AU - Zherebchevskii, V.

PY - 2019/4/4

Y1 - 2019/4/4

N2 - The pseudorapidity density of charged particles, d N ch / d η, in p–Pb collisions has been measured at a centre-of-mass energy per nucleon–nucleon pair of sNN = 8.16 TeV at mid-pseudorapidity for non-single-diffractive events. The results cover 3.6 units of pseudorapidity, | η| < 1.8. The d N ch / d η value is 19.1 ± 0.7 at | η| < 0.5. This quantity divided by ⟨ N part ⟩ / 2 is 4.73 ± 0.20 , where ⟨ N part ⟩ is the average number of participating nucleons, is 9.5% higher than the corresponding value for p–Pb collisions at sNN = 5.02 TeV. Measurements are compared with models based on different mechanisms for particle production. All models agree within uncertainties with data in the Pb-going side, while HIJING overestimates, showing a symmetric behaviour, and EPOS underestimates the p-going side of the d N ch / d η distribution. Saturation-based models reproduce the distributions well for η> - 1.3. The d N ch / d η is also measured for different centrality estimators, based both on the charged-particle multiplicity and on the energy deposited in the Zero-Degree Calorimeters. A study of the implications of the large multiplicity fluctuations due to the small number of participants for systems like p–Pb in the centrality calculation for multiplicity-based estimators is discussed, demonstrating the advantages of determining the centrality with energy deposited near beam rapidity.

AB - The pseudorapidity density of charged particles, d N ch / d η, in p–Pb collisions has been measured at a centre-of-mass energy per nucleon–nucleon pair of sNN = 8.16 TeV at mid-pseudorapidity for non-single-diffractive events. The results cover 3.6 units of pseudorapidity, | η| < 1.8. The d N ch / d η value is 19.1 ± 0.7 at | η| < 0.5. This quantity divided by ⟨ N part ⟩ / 2 is 4.73 ± 0.20 , where ⟨ N part ⟩ is the average number of participating nucleons, is 9.5% higher than the corresponding value for p–Pb collisions at sNN = 5.02 TeV. Measurements are compared with models based on different mechanisms for particle production. All models agree within uncertainties with data in the Pb-going side, while HIJING overestimates, showing a symmetric behaviour, and EPOS underestimates the p-going side of the d N ch / d η distribution. Saturation-based models reproduce the distributions well for η> - 1.3. The d N ch / d η is also measured for different centrality estimators, based both on the charged-particle multiplicity and on the energy deposited in the Zero-Degree Calorimeters. A study of the implications of the large multiplicity fluctuations due to the small number of participants for systems like p–Pb in the centrality calculation for multiplicity-based estimators is discussed, demonstrating the advantages of determining the centrality with energy deposited near beam rapidity.

KW - AU COLLISIONS

KW - MULTIPLICITY

KW - DISTRIBUTIONS

KW - DEPENDENCE

KW - CENTRALITY

UR - http://www.scopus.com/inward/record.url?scp=85064051779&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/chargedparticle-pseudorapidity-density-midrapidity-ppb-collisions-snn-816-tev

U2 - 10.1140/epjc/s10052-019-6801-9

DO - 10.1140/epjc/s10052-019-6801-9

M3 - Article

AN - SCOPUS:85064051779

VL - 79

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 4

M1 - 307

ER -

ID: 41081281