Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Chaos and hyperchaos via secondary Neimark–Sacker bifurcation in a model of radiophysical generator. / Stankevich, Nataliya; Kuznetsov, Alexander; Popova, Elena; Seleznev, Evgeniy.
в: Nonlinear Dynamics, Том 97, № 4, 01.09.2019, стр. 2355-2370.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Chaos and hyperchaos via secondary Neimark–Sacker bifurcation in a model of radiophysical generator
AU - Stankevich, Nataliya
AU - Kuznetsov, Alexander
AU - Popova, Elena
AU - Seleznev, Evgeniy
N1 - Publisher Copyright: © 2019, Springer Nature B.V.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - Using an example of a radiophysical generator model, scenarios for the formation of various chaotic attractors are described, including chaos and hyperchaos. It is shown that as a result of a secondary Neimark–Sacker bifurcation, a hyperchaos with two positive Lyapunov exponents can occur in the system. A comparative analysis of chaotic attractors born as a result of loss of smoothness of an invariant curve, as a result of period-doubling bifurcations, and as a result of secondary Neimark–Sacker bifurcation was carried out.
AB - Using an example of a radiophysical generator model, scenarios for the formation of various chaotic attractors are described, including chaos and hyperchaos. It is shown that as a result of a secondary Neimark–Sacker bifurcation, a hyperchaos with two positive Lyapunov exponents can occur in the system. A comparative analysis of chaotic attractors born as a result of loss of smoothness of an invariant curve, as a result of period-doubling bifurcations, and as a result of secondary Neimark–Sacker bifurcation was carried out.
KW - Hyperchaos
KW - Lyapunov exponents
KW - Multistability
KW - Quasiperiodic oscillations
KW - Secondary Neimark–Sacker bifurcation
UR - http://www.scopus.com/inward/record.url?scp=85069676961&partnerID=8YFLogxK
U2 - 10.1007/s11071-019-05132-0
DO - 10.1007/s11071-019-05132-0
M3 - Article
AN - SCOPUS:85069676961
VL - 97
SP - 2355
EP - 2370
JO - Nonlinear Dynamics
JF - Nonlinear Dynamics
SN - 0924-090X
IS - 4
ER -
ID: 86484523