Standard

Chalcogen- and Halogen-Bond-Donating Cyanoborohydrides Provide Imine Hydrogenation. / Ильин, Михаил Вячеславович; Сафинская, Яна Валерьевна; Полонников, Денис Алексеевич; Новиков, Александр Сергеевич; Болотин, Дмитрий Сергеевич.

в: The Journal of organic chemistry, Том 89, № 5, 19.02.2024, стр. 2916-2925.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{3f16c3cb4f13431b8c9f03ec12a6a1ab,
title = "Chalcogen- and Halogen-Bond-Donating Cyanoborohydrides Provide Imine Hydrogenation",
abstract = "Sulfonium, selenonium, telluronium, and iodonium cyanoborohydrides have been synthesized, isolated, and fully characterized by various methods, including single-crystal X-ray diffraction (XRD) analysis. The quantum theory of atoms in molecules{\textquoteright} analysis based on the XRD data indicated that the hydride···σ-hole short contacts observed in the crystal structures of each compound have a purely noncovalent nature. The telluronium and iodonium cyanoborohydrides provide a significantly higher rate of the model reaction of imine hydrogenation compared with sodium and tetrabutylammonium cyanoborohydrides. Based on the NMR and high-resolution electrospray ionization mass spectrometry data indicating that the reaction progress is accompanied by the cation reduction, a mechanism involving intermediate formation of elusive onium hydrides has been proposed as an alternative to conventional electrophilic activation of the imine moiety by its ligation to the cation{\textquoteright}s σ-hole. {\textcopyright} 2024 American Chemical Society",
keywords = "Crystal atomic structure, Electrospray ionization, Hydrides, Mass spectrometry, Positive ions, Quantum theory, Reaction intermediates, Single crystals, Sodium compounds, X ray diffraction analysis, Atoms-in-molecules analysis, Chalcogens, Crystals structures, Halogen bonds, Iodonium, Quantum Theory of Atoms in Molecules, Short contacts, Single crystal X-ray diffraction analysis, Synthesised, X-ray diffraction data, Hydrogenation",
author = "Ильин, {Михаил Вячеславович} and Сафинская, {Яна Валерьевна} and Полонников, {Денис Алексеевич} and Новиков, {Александр Сергеевич} and Болотин, {Дмитрий Сергеевич}",
note = "Export Date: 11 March 2024 CODEN: JOCEA Адрес для корреспонденции: Bolotin, D.S.; Institute of Chemistry, Universitetskaya Nab. 7/9, Russian Federation; эл. почта: d.s.bolotin@spbu.ru Сведения о финансировании: Russian Science Foundation, RSF, 23-73-10003 Текст о финансировании 1: This study was supported by the Russian Science Foundation (grant 23-73-10003). The physicochemical studies were performed at the Center for Magnetic Resonance and Center for Chemical Analysis and Materials Research, Center for X-ray Diffraction Studies (all at Saint Petersburg State University). Пристатейные ссылки: Aleksiev, M., Garcia Mancheno, O., Enantioselective dearomatization reactions of heteroarenes by anion-binding organocatalysis (2023) Chem. Commun., 59 (23), pp. 3360-3372; Nomura, M., Begum, Z., Seki, C., Okuyama, Y., Kwon, E., Uwai, K., Tokiwa, M., Nakano, H., Thiourea fused γ-amino alcohol organocatalysts for asymmetric Mannich reaction of β-keto active methylene compounds with imines (2023) RSC Adv., 13 (6), pp. 3715-3722; Ciber, L., Pozgan, F., Brodnik, H., Stefane, B., Svete, J., Waser, M., Groselj, U., Synthesis and Catalytic Activity of Bifunctional Phase-Transfer Organocatalysts Based on Camphor (2023) Molecules, 28 (3), p. 1515; Mahmudov, K.T., Pombeiro, A.J.L., Control of Selectivity in Homogeneous Catalysis through Noncovalent Interactions (2023) Chem.─Eur. J., 29 (26); Han, B., He, X.H., Liu, Y.Q., He, G., Peng, C., Li, J.L., Asymmetric organocatalysis: an enabling technology for medicinal chemistry (2021) Chem. Soc. Rev., 50 (3), pp. 1522-1586; Kristofikova, D., Modrocka, V., Meciarova, M., Sebesta, R., Green Asymmetric Organocatalysis (2020) ChemSusChem, 13 (11), pp. 2828-2858; Ouyang, J., Maji, R., Leutzsch, M., Mitschke, B., List, B., Design of an Organocatalytic Asymmetric (4 + 3) Cycloaddition of 2-Indolylalcohols with Dienolsilanes (2022) J. Am. Chem. Soc., 144 (19), pp. 8460-8466; Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G., The Halogen Bond (2016) Chem. Rev., 116 (4), pp. 2478-2601; Vogel, L., Wonner, P., Huber, S.M., Chalcogen Bonding: An Overview (2019) Angew. Chem., Int. Ed., 58 (7), pp. 1880-1891; Tepper, R., Schubert, U.S., Halogen Bonding in Solution: Anion Recognition, Templated Self-Assembly, and Organocatalysis (2018) Angew. Chem., Int. Ed., 57 (21), pp. 6004-6016; Torita, K., Haraguchi, R., Morita, Y., Kemmochi, S., Komatsu, T., Fukuzawa, S.I., Lewis acid-base synergistic catalysis of cationic halogen-bonding-donors with nucleophilic counter anions (2020) Chem. Commun., 56 (67), pp. 9715-9718; Sysoeva, A.A., Novikov, A.S., Il{\textquoteright}in, M.V., Suslonov, V.V., Bolotin, D.S., Predicting the catalytic activity of azolium-based halogen bond donors: an experimentally-verified theoretical study (2021) Org. Biomol. Chem., 19 (35), pp. 7611-7620; Takagi, K., Murakata, H., Hasegawa, T., Application of Thiourea/Halogen Bond Donor Cocatalysis in Metal-Free Cationic Polymerization of Isobutyl Vinyl Ether and Styrene Derivatives (2022) Macromolecules, 55 (13), pp. 5756-5765; Pal, D., Steinke, T., Vogel, L., Engelage, E., Heinrich, S., Kutzinski, D., Huber, S.M., A Combined Halogen- and Chalcogen-Bonding Organocatalyst (2023) Adv. Synth. Catal., 365 (16), pp. 2718-2723; Richards, V., Enhanced enantioselectivity in halogen-bonding catalysis (2023) Commun. Chem., 6 (1), p. 140; Li, Y., Ge, Y., Sun, R., Yang, X., Huang, S., Dong, H., Liu, Y., Fu, H., Balancing Activity and Stability in Halogen-Bonding Catalysis: Iodopyridinium-Catalyzed One-Pot Synthesis of 2,3-Dihydropyridinones (2023) J. Org. Chem., 88 (15), pp. 11069-11082; Portela, S., Cabrera-Trujillo, J.J., Fernandez, I., Catalysis by Bidentate Iodine(III)-Based Halogen Donors: Surpassing the Activity of Strong Lewis Acids (2021) J. Org. Chem., 86 (7), pp. 5317-5326; Robidas, R., Reinhard, D.L., Legault, C.Y., Huber, S.M., Iodine(III)-Based Halogen Bond Donors: Properties and Applications (2021) Chem. Rec., 21 (8), pp. 1912-1927; Heinen, F., Reinhard, D.L., Engelage, E., Huber, S.M., A Bidentate Iodine(III)-Based Halogen-Bond Donor as a Powerful Organocatalyst (2021) Angew. Chem., Int. Ed., 60 (10), pp. 5069-5073; Mayer, R.J., Ofial, A.R., Mayr, H., Legault, C.Y., Lewis Acidity Scale of Diaryliodonium Ions toward Oxygen, Nitrogen, and Halogen Lewis Bases (2020) J. Am. Chem. Soc., 142 (11), pp. 5221-5233; Nishida, Y., Suzuki, T., Takagi, Y., Amma, E., Tajima, R., Kuwano, S., Arai, T., A Hypervalent Cyclic Dibenzoiodolium Salt as a Halogen-Bond-Donor Catalyst for the [4 + 2] Cycloaddition of 2-Alkenylindoles (2021) ChemPlusChem, 86 (5), pp. 741-744; Yunusova, S.N., Novikov, A.S., Soldatova, N.S., Vovk, M.A., Bolotin, D.S., Iodonium salts as efficient iodine(III)-based noncovalent organocatalysts for Knorr-type reactions (2021) RSC Adv., 11 (8), pp. 4574-4583; Il{\textquoteright}in, M.V., Polonnikov, D.A., Novikov, A.S., Sysoeva, A.A., Safinskaya, Y.V., Bolotin, D.S., Influence of Coordination to Silver(I) Centers on the Activity of Heterocyclic Iodonium Salts Serving as Halogen-Bond-Donating Catalysts (2023) ChemPlusChem, 88 (10); Zhou, B., Gabbai, F.P., Anion Chelation via Double Chalcogen Bonding: The Case of a Bis-telluronium Dication and Its Application in Electrophilic Catalysis via Metal-Chloride Bond Activation (2021) J. Am. Chem. Soc., 143 (23), pp. 8625-8630; Weiss, R., Aubert, E., Pale, P., Mamane, V., Chalcogen-Bonding Catalysis with Telluronium Cations (2021) Angew. Chem., Int. Ed., 60 (35), pp. 19281-19286; Tarannam, N., Voelkel, M.H.H., Huber, S.M., Kozuch, S., Chalcogen vs Halogen Bonding Catalysis in a Water-Bridge-Cocatalyzed Nitro-Michael Reaction (2022) J. Org. Chem., 87 (3), pp. 1661-1668; Wonner, P., Steinke, T., Vogel, L., Huber, S.M., Carbonyl Activation by Selenium- and Tellurium-Based Chalcogen Bonding in a Michael Addition Reaction (2020) Chem.─Eur. J., 26 (6), pp. 1258-1262; Biot, N., Bonifazi, D., Chalcogen-bond driven molecular recognition at work (2020) Coord. Chem. Rev., 413, p. 213243; Mahmudov, K.T., Kopylovich, M.N., Guedes da Silva, M.F.C., Pombeiro, A.J.L., Chalcogen bonding in synthesis, catalysis and design of materials (2017) Dalton Trans., 46 (31), pp. 10121-10138; Steinke, T., Wonner, P., Gauld, R.M., Heinrich, S., Huber, S.M., Catalytic Activation of Imines by Chalcogen Bond Donors in a Povarov [4 + 2] Cycloaddition Reaction (2022) Chem.─Eur. J., 28 (47); Zhu, H., Zhou, P.P., Wang, Y., Cooperative chalcogen bonding interactions in confined sites activate aziridines (2022) Nat. Commun., 13 (1), p. 3563; Okuno, K., Nishiyori, R., Shirakawa, S., Catalysis by tertiary chalcogenonium salts (2023) Tetrahedron Chem., 6, p. 100037; He, X., Wang, X., Tse, Y.S., Ke, Z., Yeung, Y.Y., Applications of Selenonium Cations as Lewis Acids in Organocatalytic Reactions (2018) Angew. Chem., Int. Ed., 57 (39), pp. 12869-12873; Il{\textquoteright}in, M.V., Novikov, A.S., Bolotin, D.S., Sulfonium and Selenonium Salts as Noncovalent Organocatalysts for the Multicomponent Groebke-Blackburn-Bienayme Reaction (2022) J. Org. Chem., 87 (15), pp. 10199-10207; Sysoeva, A.A., Novikov, A.S., Il{\textquoteright}in, M.V., Bolotin, D.S., Solvent-modulated binding selectivity of reaction substrates to onium-based σ-hole donors (2023) Catal. Sci. Technol., 13 (11), pp. 3375-3385; Lu, Y., Liu, Q., Wang, Z.X., Chen, X.Y., Alkynyl Sulfonium Salts Can Be Employed as Chalcogen-Bonding Catalysts and Generate Alkynyl Radicals under Blue-Light Irradiation (2022) Angew. Chem., 134 (16); Nakamura, T., Okuno, K., Nishiyori, R., Shirakawa, S., Hydrogen-Bonding Catalysis of Alkyl-Onium Salts (2020) Chem.─Asian J., 15 (4), pp. 463-472; Breugst, M., Koenig, J.J., σ-Hole Interactions in Catalysis (2020) Eur. J. Org Chem., 2020 (34), pp. 5473-5487; Zhou, B., Gabba{\"i}, F.P., Lewis Acidic Telluronium Cations: Enhanced Chalcogen-Bond Donor Properties and Application to Transfer Hydrogenation Catalysis (2021) Organometallics, 40 (15), pp. 2371-2374; Wonner, P., Steinke, T., Huber, S.M., Activation of Quinolines by Cationic Chalcogen Bond Donors (2019) Synlett, 30 (14), pp. 1673-1678; He, W., Ge, Y.C., Tan, C.H., Halogen-Bonding-Induced Hydrogen Transfer to C=N Bond with Hantzsch Ester (2014) Org. Lett., 16 (12), pp. 3244-3247; Bolm, C., Bruckmann, A., Pena, M., Organocatalysis through Halogen-Bond Activation (2008) Synlett, 2008 (6), pp. 900-902; Pale, P., Mamane, V., Chalcogen Bonding Catalysis: Tellurium, the Last Frontier? (2023) Chem.─Eur. J., 29; Li, T., Zhou, Q., Meng, F., Cui, W., Li, Q., Zhu, J., Cao, Y., Asymmetric Reductive Amination in Organocatalysis and Biocatalysis (2023) Eur. J. Org Chem., 26 (37); Faisca Phillips, A.M., Pombeiro, A.J.L., Applications of Hantzsch Esters in Organocatalytic Enantioselective Synthesis (2023) Catalysts, 13 (2), p. 419; Asahara, M., Tanaka, M., Erabi, T., Wada, M., Bis(2,6-dimethoxyphenyl)tellurium dihalides (Cl, Br or I) and dithiocyanate: crystal structure and temperature-dependent NMR spectra (2000) Dalton Trans., pp. 3493-3499; Jose, J., Diana, E.J., Kanchana, U.S., Mathew, T.V., Ruthenium-Catalyzed Direct Reductive Amination of Carbonyl Compounds for the Synthesis of Amines: An Overview (2023) Eur. J. Org Chem., 26 (15); Liu, J., Song, Y., Ma, L., Earth-abundant Metal-catalyzed Reductive Amination: Recent Advances and Prospect for Future Catalysis (2021) Chem.─Asian J., 16 (17), pp. 2371-2391; MicroMath Inc., , MicroMath Inc., Version 2.01 ed., Copyright{\textcopyright} 1986-1995; Bader, R.F.W., A quantum theory of molecular structure and its applications (1991) Chem. Rev., 91 (5), pp. 893-928; Espinosa, E., Alkorta, I., Elguero, J., Molins, E., From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H···F-Y systems (2002) J. Chem. Phys., 117 (12), pp. 5529-5542; Espinosa, E., Molins, E., Lecomte, C., Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities (1998) Chem. Phys. Lett., 285 (3-4), pp. 170-173; Palatinus, L., Chapuis, G., SUPERFLIP - A Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions (2007) J. Appl. Crystallogr., 40, pp. 786-790; Palatinus, L., van der Lee, A., Symmetry Determination Following Structure Solution in P1 (2008) J. Appl. Crystallogr., 41, pp. 975-984; Palatinus, L., Prathapa, S.J., van Smaalen, S., EDMA: A Computer Program for Topological Analysis of Discrete Electron Densities (2012) J. Appl. Crystallogr., 45, pp. 575-580; Sheldrick, G.M., SHELXT - Integrated Space-group and Crystal Structure Determination (2015) Acta Crystallogr., Sect. A: Found. Adv., 71, pp. 3-8; Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H., OLEX2: a Complete Structure Solution, Refinement and Analysis Program (2009) J. Appl. Crystallogr., 42, pp. 339-341; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Petersson, G.A., (2010) Gaussian 09, , ;;;;;;;;;; . Revision C.01; Gaussian Inc. Wallingford CT ; Marenich, A.V., Cramer, C.J., Truhlar, D.G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions (2009) J. Phys. Chem. B, 113 (18), pp. 6378-6396; Lu, T., Chen, F., Multiwfn: a multifunctional wavefunction analyzer (2012) J. Comput. Chem., 33 (5), pp. 580-592",
year = "2024",
month = feb,
day = "19",
doi = "10.1021/acs.joc.3c02282",
language = "Английский",
volume = "89",
pages = "2916--2925",
journal = "Journal of Organic Chemistry",
issn = "0022-3263",
publisher = "American Chemical Society",
number = "5",

}

RIS

TY - JOUR

T1 - Chalcogen- and Halogen-Bond-Donating Cyanoborohydrides Provide Imine Hydrogenation

AU - Ильин, Михаил Вячеславович

AU - Сафинская, Яна Валерьевна

AU - Полонников, Денис Алексеевич

AU - Новиков, Александр Сергеевич

AU - Болотин, Дмитрий Сергеевич

N1 - Export Date: 11 March 2024 CODEN: JOCEA Адрес для корреспонденции: Bolotin, D.S.; Institute of Chemistry, Universitetskaya Nab. 7/9, Russian Federation; эл. почта: d.s.bolotin@spbu.ru Сведения о финансировании: Russian Science Foundation, RSF, 23-73-10003 Текст о финансировании 1: This study was supported by the Russian Science Foundation (grant 23-73-10003). The physicochemical studies were performed at the Center for Magnetic Resonance and Center for Chemical Analysis and Materials Research, Center for X-ray Diffraction Studies (all at Saint Petersburg State University). Пристатейные ссылки: Aleksiev, M., Garcia Mancheno, O., Enantioselective dearomatization reactions of heteroarenes by anion-binding organocatalysis (2023) Chem. Commun., 59 (23), pp. 3360-3372; Nomura, M., Begum, Z., Seki, C., Okuyama, Y., Kwon, E., Uwai, K., Tokiwa, M., Nakano, H., Thiourea fused γ-amino alcohol organocatalysts for asymmetric Mannich reaction of β-keto active methylene compounds with imines (2023) RSC Adv., 13 (6), pp. 3715-3722; Ciber, L., Pozgan, F., Brodnik, H., Stefane, B., Svete, J., Waser, M., Groselj, U., Synthesis and Catalytic Activity of Bifunctional Phase-Transfer Organocatalysts Based on Camphor (2023) Molecules, 28 (3), p. 1515; Mahmudov, K.T., Pombeiro, A.J.L., Control of Selectivity in Homogeneous Catalysis through Noncovalent Interactions (2023) Chem.─Eur. J., 29 (26); Han, B., He, X.H., Liu, Y.Q., He, G., Peng, C., Li, J.L., Asymmetric organocatalysis: an enabling technology for medicinal chemistry (2021) Chem. Soc. Rev., 50 (3), pp. 1522-1586; Kristofikova, D., Modrocka, V., Meciarova, M., Sebesta, R., Green Asymmetric Organocatalysis (2020) ChemSusChem, 13 (11), pp. 2828-2858; Ouyang, J., Maji, R., Leutzsch, M., Mitschke, B., List, B., Design of an Organocatalytic Asymmetric (4 + 3) Cycloaddition of 2-Indolylalcohols with Dienolsilanes (2022) J. Am. Chem. Soc., 144 (19), pp. 8460-8466; Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G., The Halogen Bond (2016) Chem. Rev., 116 (4), pp. 2478-2601; Vogel, L., Wonner, P., Huber, S.M., Chalcogen Bonding: An Overview (2019) Angew. Chem., Int. Ed., 58 (7), pp. 1880-1891; Tepper, R., Schubert, U.S., Halogen Bonding in Solution: Anion Recognition, Templated Self-Assembly, and Organocatalysis (2018) Angew. Chem., Int. Ed., 57 (21), pp. 6004-6016; Torita, K., Haraguchi, R., Morita, Y., Kemmochi, S., Komatsu, T., Fukuzawa, S.I., Lewis acid-base synergistic catalysis of cationic halogen-bonding-donors with nucleophilic counter anions (2020) Chem. Commun., 56 (67), pp. 9715-9718; Sysoeva, A.A., Novikov, A.S., Il’in, M.V., Suslonov, V.V., Bolotin, D.S., Predicting the catalytic activity of azolium-based halogen bond donors: an experimentally-verified theoretical study (2021) Org. Biomol. Chem., 19 (35), pp. 7611-7620; Takagi, K., Murakata, H., Hasegawa, T., Application of Thiourea/Halogen Bond Donor Cocatalysis in Metal-Free Cationic Polymerization of Isobutyl Vinyl Ether and Styrene Derivatives (2022) Macromolecules, 55 (13), pp. 5756-5765; Pal, D., Steinke, T., Vogel, L., Engelage, E., Heinrich, S., Kutzinski, D., Huber, S.M., A Combined Halogen- and Chalcogen-Bonding Organocatalyst (2023) Adv. Synth. Catal., 365 (16), pp. 2718-2723; Richards, V., Enhanced enantioselectivity in halogen-bonding catalysis (2023) Commun. Chem., 6 (1), p. 140; Li, Y., Ge, Y., Sun, R., Yang, X., Huang, S., Dong, H., Liu, Y., Fu, H., Balancing Activity and Stability in Halogen-Bonding Catalysis: Iodopyridinium-Catalyzed One-Pot Synthesis of 2,3-Dihydropyridinones (2023) J. Org. Chem., 88 (15), pp. 11069-11082; Portela, S., Cabrera-Trujillo, J.J., Fernandez, I., Catalysis by Bidentate Iodine(III)-Based Halogen Donors: Surpassing the Activity of Strong Lewis Acids (2021) J. Org. Chem., 86 (7), pp. 5317-5326; Robidas, R., Reinhard, D.L., Legault, C.Y., Huber, S.M., Iodine(III)-Based Halogen Bond Donors: Properties and Applications (2021) Chem. Rec., 21 (8), pp. 1912-1927; Heinen, F., Reinhard, D.L., Engelage, E., Huber, S.M., A Bidentate Iodine(III)-Based Halogen-Bond Donor as a Powerful Organocatalyst (2021) Angew. Chem., Int. Ed., 60 (10), pp. 5069-5073; Mayer, R.J., Ofial, A.R., Mayr, H., Legault, C.Y., Lewis Acidity Scale of Diaryliodonium Ions toward Oxygen, Nitrogen, and Halogen Lewis Bases (2020) J. Am. Chem. Soc., 142 (11), pp. 5221-5233; Nishida, Y., Suzuki, T., Takagi, Y., Amma, E., Tajima, R., Kuwano, S., Arai, T., A Hypervalent Cyclic Dibenzoiodolium Salt as a Halogen-Bond-Donor Catalyst for the [4 + 2] Cycloaddition of 2-Alkenylindoles (2021) ChemPlusChem, 86 (5), pp. 741-744; Yunusova, S.N., Novikov, A.S., Soldatova, N.S., Vovk, M.A., Bolotin, D.S., Iodonium salts as efficient iodine(III)-based noncovalent organocatalysts for Knorr-type reactions (2021) RSC Adv., 11 (8), pp. 4574-4583; Il’in, M.V., Polonnikov, D.A., Novikov, A.S., Sysoeva, A.A., Safinskaya, Y.V., Bolotin, D.S., Influence of Coordination to Silver(I) Centers on the Activity of Heterocyclic Iodonium Salts Serving as Halogen-Bond-Donating Catalysts (2023) ChemPlusChem, 88 (10); Zhou, B., Gabbai, F.P., Anion Chelation via Double Chalcogen Bonding: The Case of a Bis-telluronium Dication and Its Application in Electrophilic Catalysis via Metal-Chloride Bond Activation (2021) J. Am. Chem. Soc., 143 (23), pp. 8625-8630; Weiss, R., Aubert, E., Pale, P., Mamane, V., Chalcogen-Bonding Catalysis with Telluronium Cations (2021) Angew. Chem., Int. Ed., 60 (35), pp. 19281-19286; Tarannam, N., Voelkel, M.H.H., Huber, S.M., Kozuch, S., Chalcogen vs Halogen Bonding Catalysis in a Water-Bridge-Cocatalyzed Nitro-Michael Reaction (2022) J. Org. Chem., 87 (3), pp. 1661-1668; Wonner, P., Steinke, T., Vogel, L., Huber, S.M., Carbonyl Activation by Selenium- and Tellurium-Based Chalcogen Bonding in a Michael Addition Reaction (2020) Chem.─Eur. J., 26 (6), pp. 1258-1262; Biot, N., Bonifazi, D., Chalcogen-bond driven molecular recognition at work (2020) Coord. Chem. Rev., 413, p. 213243; Mahmudov, K.T., Kopylovich, M.N., Guedes da Silva, M.F.C., Pombeiro, A.J.L., Chalcogen bonding in synthesis, catalysis and design of materials (2017) Dalton Trans., 46 (31), pp. 10121-10138; Steinke, T., Wonner, P., Gauld, R.M., Heinrich, S., Huber, S.M., Catalytic Activation of Imines by Chalcogen Bond Donors in a Povarov [4 + 2] Cycloaddition Reaction (2022) Chem.─Eur. J., 28 (47); Zhu, H., Zhou, P.P., Wang, Y., Cooperative chalcogen bonding interactions in confined sites activate aziridines (2022) Nat. Commun., 13 (1), p. 3563; Okuno, K., Nishiyori, R., Shirakawa, S., Catalysis by tertiary chalcogenonium salts (2023) Tetrahedron Chem., 6, p. 100037; He, X., Wang, X., Tse, Y.S., Ke, Z., Yeung, Y.Y., Applications of Selenonium Cations as Lewis Acids in Organocatalytic Reactions (2018) Angew. Chem., Int. Ed., 57 (39), pp. 12869-12873; Il’in, M.V., Novikov, A.S., Bolotin, D.S., Sulfonium and Selenonium Salts as Noncovalent Organocatalysts for the Multicomponent Groebke-Blackburn-Bienayme Reaction (2022) J. Org. Chem., 87 (15), pp. 10199-10207; Sysoeva, A.A., Novikov, A.S., Il’in, M.V., Bolotin, D.S., Solvent-modulated binding selectivity of reaction substrates to onium-based σ-hole donors (2023) Catal. Sci. Technol., 13 (11), pp. 3375-3385; Lu, Y., Liu, Q., Wang, Z.X., Chen, X.Y., Alkynyl Sulfonium Salts Can Be Employed as Chalcogen-Bonding Catalysts and Generate Alkynyl Radicals under Blue-Light Irradiation (2022) Angew. Chem., 134 (16); Nakamura, T., Okuno, K., Nishiyori, R., Shirakawa, S., Hydrogen-Bonding Catalysis of Alkyl-Onium Salts (2020) Chem.─Asian J., 15 (4), pp. 463-472; Breugst, M., Koenig, J.J., σ-Hole Interactions in Catalysis (2020) Eur. J. Org Chem., 2020 (34), pp. 5473-5487; Zhou, B., Gabbaï, F.P., Lewis Acidic Telluronium Cations: Enhanced Chalcogen-Bond Donor Properties and Application to Transfer Hydrogenation Catalysis (2021) Organometallics, 40 (15), pp. 2371-2374; Wonner, P., Steinke, T., Huber, S.M., Activation of Quinolines by Cationic Chalcogen Bond Donors (2019) Synlett, 30 (14), pp. 1673-1678; He, W., Ge, Y.C., Tan, C.H., Halogen-Bonding-Induced Hydrogen Transfer to C=N Bond with Hantzsch Ester (2014) Org. Lett., 16 (12), pp. 3244-3247; Bolm, C., Bruckmann, A., Pena, M., Organocatalysis through Halogen-Bond Activation (2008) Synlett, 2008 (6), pp. 900-902; Pale, P., Mamane, V., Chalcogen Bonding Catalysis: Tellurium, the Last Frontier? (2023) Chem.─Eur. J., 29; Li, T., Zhou, Q., Meng, F., Cui, W., Li, Q., Zhu, J., Cao, Y., Asymmetric Reductive Amination in Organocatalysis and Biocatalysis (2023) Eur. J. Org Chem., 26 (37); Faisca Phillips, A.M., Pombeiro, A.J.L., Applications of Hantzsch Esters in Organocatalytic Enantioselective Synthesis (2023) Catalysts, 13 (2), p. 419; Asahara, M., Tanaka, M., Erabi, T., Wada, M., Bis(2,6-dimethoxyphenyl)tellurium dihalides (Cl, Br or I) and dithiocyanate: crystal structure and temperature-dependent NMR spectra (2000) Dalton Trans., pp. 3493-3499; Jose, J., Diana, E.J., Kanchana, U.S., Mathew, T.V., Ruthenium-Catalyzed Direct Reductive Amination of Carbonyl Compounds for the Synthesis of Amines: An Overview (2023) Eur. J. Org Chem., 26 (15); Liu, J., Song, Y., Ma, L., Earth-abundant Metal-catalyzed Reductive Amination: Recent Advances and Prospect for Future Catalysis (2021) Chem.─Asian J., 16 (17), pp. 2371-2391; MicroMath Inc., , MicroMath Inc., Version 2.01 ed., Copyright© 1986-1995; Bader, R.F.W., A quantum theory of molecular structure and its applications (1991) Chem. Rev., 91 (5), pp. 893-928; Espinosa, E., Alkorta, I., Elguero, J., Molins, E., From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H···F-Y systems (2002) J. Chem. Phys., 117 (12), pp. 5529-5542; Espinosa, E., Molins, E., Lecomte, C., Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities (1998) Chem. Phys. Lett., 285 (3-4), pp. 170-173; Palatinus, L., Chapuis, G., SUPERFLIP - A Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions (2007) J. Appl. Crystallogr., 40, pp. 786-790; Palatinus, L., van der Lee, A., Symmetry Determination Following Structure Solution in P1 (2008) J. Appl. Crystallogr., 41, pp. 975-984; Palatinus, L., Prathapa, S.J., van Smaalen, S., EDMA: A Computer Program for Topological Analysis of Discrete Electron Densities (2012) J. Appl. Crystallogr., 45, pp. 575-580; Sheldrick, G.M., SHELXT - Integrated Space-group and Crystal Structure Determination (2015) Acta Crystallogr., Sect. A: Found. Adv., 71, pp. 3-8; Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H., OLEX2: a Complete Structure Solution, Refinement and Analysis Program (2009) J. Appl. Crystallogr., 42, pp. 339-341; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Petersson, G.A., (2010) Gaussian 09, , ;;;;;;;;;; . Revision C.01; Gaussian Inc. Wallingford CT ; Marenich, A.V., Cramer, C.J., Truhlar, D.G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions (2009) J. Phys. Chem. B, 113 (18), pp. 6378-6396; Lu, T., Chen, F., Multiwfn: a multifunctional wavefunction analyzer (2012) J. Comput. Chem., 33 (5), pp. 580-592

PY - 2024/2/19

Y1 - 2024/2/19

N2 - Sulfonium, selenonium, telluronium, and iodonium cyanoborohydrides have been synthesized, isolated, and fully characterized by various methods, including single-crystal X-ray diffraction (XRD) analysis. The quantum theory of atoms in molecules’ analysis based on the XRD data indicated that the hydride···σ-hole short contacts observed in the crystal structures of each compound have a purely noncovalent nature. The telluronium and iodonium cyanoborohydrides provide a significantly higher rate of the model reaction of imine hydrogenation compared with sodium and tetrabutylammonium cyanoborohydrides. Based on the NMR and high-resolution electrospray ionization mass spectrometry data indicating that the reaction progress is accompanied by the cation reduction, a mechanism involving intermediate formation of elusive onium hydrides has been proposed as an alternative to conventional electrophilic activation of the imine moiety by its ligation to the cation’s σ-hole. © 2024 American Chemical Society

AB - Sulfonium, selenonium, telluronium, and iodonium cyanoborohydrides have been synthesized, isolated, and fully characterized by various methods, including single-crystal X-ray diffraction (XRD) analysis. The quantum theory of atoms in molecules’ analysis based on the XRD data indicated that the hydride···σ-hole short contacts observed in the crystal structures of each compound have a purely noncovalent nature. The telluronium and iodonium cyanoborohydrides provide a significantly higher rate of the model reaction of imine hydrogenation compared with sodium and tetrabutylammonium cyanoborohydrides. Based on the NMR and high-resolution electrospray ionization mass spectrometry data indicating that the reaction progress is accompanied by the cation reduction, a mechanism involving intermediate formation of elusive onium hydrides has been proposed as an alternative to conventional electrophilic activation of the imine moiety by its ligation to the cation’s σ-hole. © 2024 American Chemical Society

KW - Crystal atomic structure

KW - Electrospray ionization

KW - Hydrides

KW - Mass spectrometry

KW - Positive ions

KW - Quantum theory

KW - Reaction intermediates

KW - Single crystals

KW - Sodium compounds

KW - X ray diffraction analysis

KW - Atoms-in-molecules analysis

KW - Chalcogens

KW - Crystals structures

KW - Halogen bonds

KW - Iodonium

KW - Quantum Theory of Atoms in Molecules

KW - Short contacts

KW - Single crystal X-ray diffraction analysis

KW - Synthesised

KW - X-ray diffraction data

KW - Hydrogenation

UR - https://www.mendeley.com/catalogue/0c0dab88-a2bf-34fa-b2a1-572ee621c85f/

U2 - 10.1021/acs.joc.3c02282

DO - 10.1021/acs.joc.3c02282

M3 - статья

VL - 89

SP - 2916

EP - 2925

JO - Journal of Organic Chemistry

JF - Journal of Organic Chemistry

SN - 0022-3263

IS - 5

ER -

ID: 116548172