Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › глава/раздел › научная › Рецензирование
Chain transitive sets and shadowing. / Pilyugin, Sergei Yu; Sakai, Kazuhiro.
Lecture Notes in Mathematics. Springer Nature, 2017. стр. 181-208 (Lecture Notes in Mathematics; Том 2193).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › глава/раздел › научная › Рецензирование
}
TY - CHAP
T1 - Chain transitive sets and shadowing
AU - Pilyugin, Sergei Yu
AU - Sakai, Kazuhiro
N1 - Publisher Copyright: © Springer International Publishing AG 2017. Copyright: Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017
Y1 - 2017
N2 - In this chapter, we study relations between the shadowing property of diffeomorphisms on their chain transitive sets and the hyperbolicity of such sets. We prove the following two main results: • Let ⋀ be a closed invariant set of f ϵ Diff1(M). Then f|⋀ is chain transitive and C1-stably shadowing in a neighborhood of ⋀ if and only if ⋀ is a hyperbolic basic set (Theorem 4.2.1); • there is a residual set R ⊂ Diff1(M) such that if f ϵ R and ⋀ is a locally maximal chain transitive set of f, then ⋀ is hyperbolic if and only if f |⋀ is shadowing (Theorem 4.3.1).
AB - In this chapter, we study relations between the shadowing property of diffeomorphisms on their chain transitive sets and the hyperbolicity of such sets. We prove the following two main results: • Let ⋀ be a closed invariant set of f ϵ Diff1(M). Then f|⋀ is chain transitive and C1-stably shadowing in a neighborhood of ⋀ if and only if ⋀ is a hyperbolic basic set (Theorem 4.2.1); • there is a residual set R ⊂ Diff1(M) such that if f ϵ R and ⋀ is a locally maximal chain transitive set of f, then ⋀ is hyperbolic if and only if f |⋀ is shadowing (Theorem 4.3.1).
UR - http://www.scopus.com/inward/record.url?scp=85029091668&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-65184-2_4
DO - 10.1007/978-3-319-65184-2_4
M3 - Chapter
AN - SCOPUS:85029091668
T3 - Lecture Notes in Mathematics
SP - 181
EP - 208
BT - Lecture Notes in Mathematics
PB - Springer Nature
ER -
ID: 74985808