DOI

We study properties of bounded sets in Banach spaces, connected with the concept of equimeasurability introduced by A. Grothendieck. We introduce corresponding ideals of operators and find characterizations of them in terms of continuity of operators in certain topologies. The following result (Corollary 9) follows from the basic theorems: Let T be a continuous linear operator from a Banach space X to a Banach space Y. The following assertions are equivalent: 1) T is an operator of type RN; 2) for any Banach space Z, for any number p, p > 0, and any p-absolutely summing operator U:Z → X the operator TU is approximately p-Radonifying; 3) for any Banach space Z and any absolutely summing operator U:Z → X the operator TU is approximately 1-Radonifying. We note that the implication I)⇒2), is apparently new even if the operator T is weakly compact.

Язык оригиналаанглийский
Страницы (с-по)2156-2159
Число страниц4
ЖурналJournal of Soviet Mathematics
Том34
Номер выпуска6
DOI
СостояниеОпубликовано - сен 1986

    Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

ID: 73500514