Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Capture into parametric autoresonance in the presence of noise. / Sultanov, Oskar.
в: Communications in Nonlinear Science and Numerical Simulation, Том 75, 01.08.2019, стр. 14-21.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Capture into parametric autoresonance in the presence of noise
AU - Sultanov, Oskar
PY - 2019/8/1
Y1 - 2019/8/1
N2 - System of differential equations describing the initial stage of the capture of nonlinear oscillations into the parametric autoresonance is considered. Of special interest are resonant solutions whose amplitude increases without bound with time. The stability of such solutions ensures the physical observability of the autoresonant capture. We study the stability of such solutions with respect to persistent perturbations of white noise type, and we show that under certain restrictions on the intensity of the noise, the capture into parametric autoresonance is preserved with probability tending to one.
AB - System of differential equations describing the initial stage of the capture of nonlinear oscillations into the parametric autoresonance is considered. Of special interest are resonant solutions whose amplitude increases without bound with time. The stability of such solutions ensures the physical observability of the autoresonant capture. We study the stability of such solutions with respect to persistent perturbations of white noise type, and we show that under certain restrictions on the intensity of the noise, the capture into parametric autoresonance is preserved with probability tending to one.
KW - Autoresonance
KW - Lyapunov function
KW - Stability
KW - Stochastic perturbation
UR - http://www.scopus.com/inward/record.url?scp=85063320400&partnerID=8YFLogxK
U2 - 10.1016/j.cnsns.2019.03.022
DO - 10.1016/j.cnsns.2019.03.022
M3 - Article
AN - SCOPUS:85063320400
VL - 75
SP - 14
EP - 21
JO - Communications in Nonlinear Science and Numerical Simulation
JF - Communications in Nonlinear Science and Numerical Simulation
SN - 1007-5704
ER -
ID: 126273107