Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Canopy homolog 2 as a novel molecular target in hepatocarcinogenesis. / Kakehashi, Anna; Suzuki, Shugo; Shiota, Masayuki; Raymo, Nina; Gi, Min; Tachibana, Taro; Stefanov, Vasily; Wanibuchi, Hideki.
в: Cancers, Том 13, № 14, 3613, 19.07.2021.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Canopy homolog 2 as a novel molecular target in hepatocarcinogenesis
AU - Kakehashi, Anna
AU - Suzuki, Shugo
AU - Shiota, Masayuki
AU - Raymo, Nina
AU - Gi, Min
AU - Tachibana, Taro
AU - Stefanov, Vasily
AU - Wanibuchi, Hideki
N1 - Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/7/19
Y1 - 2021/7/19
N2 - In the present study, the role of a novel protein involved in neurite development and endoplasmic reticulum (ER) stress, canopy homolog 2 (CNPY2), was investigated in mouse and human hepatocarcinogenesis. Firstly, a sensitive quantitative and qualitative detection of protein expression using QSTAR Elite LC-Ms/Ms was performed for the analysis of lysates of microdissected hepatocellular altered foci (AF), adenomas (HCAs), carcinomas (HCCs) and peritumoral livers from C57Bl/6J mice treated with diethylnitrosamine (DEN) and then maintained for 27 or 38 weeks on basal diet. Significant overexpression of 18.5 kDa CNPY2 processed form was demonstrated in AF, HCAs and HCCs, while low expression was observed in the livers of DEN-treated and control mice. Furthermore, CNPY2 elevation in AF and tumors was coordinated with accumulation of numerous cytoskeletal proteins, including cytokeratins 8 and 18, actin, non-muscle myosin and septin 9 and those involved in ER and mitochondrial stresses such as calreticulin, prohibitins 1 and 2 and YME1-like-1. Knockdown of CNPY2 in Huh7 and HepG2 human liver cancer cells resulted in significant suppression of cell survival and invasive potential, inhibition of cyclin D1, induction of p21Waf1/Cip1 and suppression of the apoptosis inhibitor Bcl2. In contrast, transfection of a mouse CNPY2 (mCNPY2-Ds-Red) vector plasmid in Huh7 and HepG2 cancer cells, with subsequent accumulation of CNPY2 in the ER, resulted in significant increase in cancer cells survival. Clinicopathological analysis in 90 HCV-positive HCC patients, revealed significant association of CNPY2 overexpression with poor overall (p = 0.041) survival. Furthermore, CNPY2 increase was associated with vessel invasion (p = 0.038), poor histological differentiation (p = 0.035) and advanced clinical stage (p = 0.016). In conclusion, CNPY2 is a promising molecular target elevated early in hepatocarcinogenesis and prognostic marker for human HCV-associated HCC. CNPY2 is involved in the processes of ER stress, cell cycle progression, proliferation, survival and invasion of liver tumor cells.
AB - In the present study, the role of a novel protein involved in neurite development and endoplasmic reticulum (ER) stress, canopy homolog 2 (CNPY2), was investigated in mouse and human hepatocarcinogenesis. Firstly, a sensitive quantitative and qualitative detection of protein expression using QSTAR Elite LC-Ms/Ms was performed for the analysis of lysates of microdissected hepatocellular altered foci (AF), adenomas (HCAs), carcinomas (HCCs) and peritumoral livers from C57Bl/6J mice treated with diethylnitrosamine (DEN) and then maintained for 27 or 38 weeks on basal diet. Significant overexpression of 18.5 kDa CNPY2 processed form was demonstrated in AF, HCAs and HCCs, while low expression was observed in the livers of DEN-treated and control mice. Furthermore, CNPY2 elevation in AF and tumors was coordinated with accumulation of numerous cytoskeletal proteins, including cytokeratins 8 and 18, actin, non-muscle myosin and septin 9 and those involved in ER and mitochondrial stresses such as calreticulin, prohibitins 1 and 2 and YME1-like-1. Knockdown of CNPY2 in Huh7 and HepG2 human liver cancer cells resulted in significant suppression of cell survival and invasive potential, inhibition of cyclin D1, induction of p21Waf1/Cip1 and suppression of the apoptosis inhibitor Bcl2. In contrast, transfection of a mouse CNPY2 (mCNPY2-Ds-Red) vector plasmid in Huh7 and HepG2 cancer cells, with subsequent accumulation of CNPY2 in the ER, resulted in significant increase in cancer cells survival. Clinicopathological analysis in 90 HCV-positive HCC patients, revealed significant association of CNPY2 overexpression with poor overall (p = 0.041) survival. Furthermore, CNPY2 increase was associated with vessel invasion (p = 0.038), poor histological differentiation (p = 0.035) and advanced clinical stage (p = 0.016). In conclusion, CNPY2 is a promising molecular target elevated early in hepatocarcinogenesis and prognostic marker for human HCV-associated HCC. CNPY2 is involved in the processes of ER stress, cell cycle progression, proliferation, survival and invasion of liver tumor cells.
KW - CNPY2
KW - Hepatocarcinogenesis
KW - Human
KW - Mice
KW - Molecular target
KW - Prognostic marker
KW - ACTIVATION
KW - PROTEIN
KW - hepatocarcinogenesis
KW - IDENTIFICATION
KW - COMBINATION
KW - mice
KW - molecular target
KW - prognostic marker
KW - CARCINOMA CELL-LINE
KW - HEPATOCELLULAR-CARCINOMA
KW - ELECTROPHORESIS
KW - human
KW - EXPRESSION
KW - MICRODISSECTION
UR - http://www.scopus.com/inward/record.url?scp=85110264102&partnerID=8YFLogxK
U2 - 10.3390/cancers13143613
DO - 10.3390/cancers13143613
M3 - Article
AN - SCOPUS:85110264102
VL - 13
JO - Cancers
JF - Cancers
SN - 2072-6694
IS - 14
M1 - 3613
ER -
ID: 89838872