Standard

Canopy homolog 2 as a novel molecular target in hepatocarcinogenesis. / Kakehashi, Anna; Suzuki, Shugo; Shiota, Masayuki; Raymo, Nina; Gi, Min; Tachibana, Taro; Stefanov, Vasily; Wanibuchi, Hideki.

в: Cancers, Том 13, № 14, 3613, 19.07.2021.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Kakehashi, A, Suzuki, S, Shiota, M, Raymo, N, Gi, M, Tachibana, T, Stefanov, V & Wanibuchi, H 2021, 'Canopy homolog 2 as a novel molecular target in hepatocarcinogenesis', Cancers, Том. 13, № 14, 3613. https://doi.org/10.3390/cancers13143613

APA

Kakehashi, A., Suzuki, S., Shiota, M., Raymo, N., Gi, M., Tachibana, T., Stefanov, V., & Wanibuchi, H. (2021). Canopy homolog 2 as a novel molecular target in hepatocarcinogenesis. Cancers, 13(14), [3613]. https://doi.org/10.3390/cancers13143613

Vancouver

Kakehashi A, Suzuki S, Shiota M, Raymo N, Gi M, Tachibana T и пр. Canopy homolog 2 as a novel molecular target in hepatocarcinogenesis. Cancers. 2021 Июль 19;13(14). 3613. https://doi.org/10.3390/cancers13143613

Author

Kakehashi, Anna ; Suzuki, Shugo ; Shiota, Masayuki ; Raymo, Nina ; Gi, Min ; Tachibana, Taro ; Stefanov, Vasily ; Wanibuchi, Hideki. / Canopy homolog 2 as a novel molecular target in hepatocarcinogenesis. в: Cancers. 2021 ; Том 13, № 14.

BibTeX

@article{489398fac9c5441199c6a574b8fdaee8,
title = "Canopy homolog 2 as a novel molecular target in hepatocarcinogenesis",
abstract = "In the present study, the role of a novel protein involved in neurite development and endoplasmic reticulum (ER) stress, canopy homolog 2 (CNPY2), was investigated in mouse and human hepatocarcinogenesis. Firstly, a sensitive quantitative and qualitative detection of protein expression using QSTAR Elite LC-Ms/Ms was performed for the analysis of lysates of microdissected hepatocellular altered foci (AF), adenomas (HCAs), carcinomas (HCCs) and peritumoral livers from C57Bl/6J mice treated with diethylnitrosamine (DEN) and then maintained for 27 or 38 weeks on basal diet. Significant overexpression of 18.5 kDa CNPY2 processed form was demonstrated in AF, HCAs and HCCs, while low expression was observed in the livers of DEN-treated and control mice. Furthermore, CNPY2 elevation in AF and tumors was coordinated with accumulation of numerous cytoskeletal proteins, including cytokeratins 8 and 18, actin, non-muscle myosin and septin 9 and those involved in ER and mitochondrial stresses such as calreticulin, prohibitins 1 and 2 and YME1-like-1. Knockdown of CNPY2 in Huh7 and HepG2 human liver cancer cells resulted in significant suppression of cell survival and invasive potential, inhibition of cyclin D1, induction of p21Waf1/Cip1 and suppression of the apoptosis inhibitor Bcl2. In contrast, transfection of a mouse CNPY2 (mCNPY2-Ds-Red) vector plasmid in Huh7 and HepG2 cancer cells, with subsequent accumulation of CNPY2 in the ER, resulted in significant increase in cancer cells survival. Clinicopathological analysis in 90 HCV-positive HCC patients, revealed significant association of CNPY2 overexpression with poor overall (p = 0.041) survival. Furthermore, CNPY2 increase was associated with vessel invasion (p = 0.038), poor histological differentiation (p = 0.035) and advanced clinical stage (p = 0.016). In conclusion, CNPY2 is a promising molecular target elevated early in hepatocarcinogenesis and prognostic marker for human HCV-associated HCC. CNPY2 is involved in the processes of ER stress, cell cycle progression, proliferation, survival and invasion of liver tumor cells.",
keywords = "CNPY2, Hepatocarcinogenesis, Human, Mice, Molecular target, Prognostic marker, ACTIVATION, PROTEIN, hepatocarcinogenesis, IDENTIFICATION, COMBINATION, mice, molecular target, prognostic marker, CARCINOMA CELL-LINE, HEPATOCELLULAR-CARCINOMA, ELECTROPHORESIS, human, EXPRESSION, MICRODISSECTION",
author = "Anna Kakehashi and Shugo Suzuki and Masayuki Shiota and Nina Raymo and Min Gi and Taro Tachibana and Vasily Stefanov and Hideki Wanibuchi",
note = "Publisher Copyright: {\textcopyright} 2021 by the authors. Licensee MDPI, Basel, Switzerland.",
year = "2021",
month = jul,
day = "19",
doi = "10.3390/cancers13143613",
language = "English",
volume = "13",
journal = "Cancers",
issn = "2072-6694",
publisher = "MDPI AG",
number = "14",

}

RIS

TY - JOUR

T1 - Canopy homolog 2 as a novel molecular target in hepatocarcinogenesis

AU - Kakehashi, Anna

AU - Suzuki, Shugo

AU - Shiota, Masayuki

AU - Raymo, Nina

AU - Gi, Min

AU - Tachibana, Taro

AU - Stefanov, Vasily

AU - Wanibuchi, Hideki

N1 - Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

PY - 2021/7/19

Y1 - 2021/7/19

N2 - In the present study, the role of a novel protein involved in neurite development and endoplasmic reticulum (ER) stress, canopy homolog 2 (CNPY2), was investigated in mouse and human hepatocarcinogenesis. Firstly, a sensitive quantitative and qualitative detection of protein expression using QSTAR Elite LC-Ms/Ms was performed for the analysis of lysates of microdissected hepatocellular altered foci (AF), adenomas (HCAs), carcinomas (HCCs) and peritumoral livers from C57Bl/6J mice treated with diethylnitrosamine (DEN) and then maintained for 27 or 38 weeks on basal diet. Significant overexpression of 18.5 kDa CNPY2 processed form was demonstrated in AF, HCAs and HCCs, while low expression was observed in the livers of DEN-treated and control mice. Furthermore, CNPY2 elevation in AF and tumors was coordinated with accumulation of numerous cytoskeletal proteins, including cytokeratins 8 and 18, actin, non-muscle myosin and septin 9 and those involved in ER and mitochondrial stresses such as calreticulin, prohibitins 1 and 2 and YME1-like-1. Knockdown of CNPY2 in Huh7 and HepG2 human liver cancer cells resulted in significant suppression of cell survival and invasive potential, inhibition of cyclin D1, induction of p21Waf1/Cip1 and suppression of the apoptosis inhibitor Bcl2. In contrast, transfection of a mouse CNPY2 (mCNPY2-Ds-Red) vector plasmid in Huh7 and HepG2 cancer cells, with subsequent accumulation of CNPY2 in the ER, resulted in significant increase in cancer cells survival. Clinicopathological analysis in 90 HCV-positive HCC patients, revealed significant association of CNPY2 overexpression with poor overall (p = 0.041) survival. Furthermore, CNPY2 increase was associated with vessel invasion (p = 0.038), poor histological differentiation (p = 0.035) and advanced clinical stage (p = 0.016). In conclusion, CNPY2 is a promising molecular target elevated early in hepatocarcinogenesis and prognostic marker for human HCV-associated HCC. CNPY2 is involved in the processes of ER stress, cell cycle progression, proliferation, survival and invasion of liver tumor cells.

AB - In the present study, the role of a novel protein involved in neurite development and endoplasmic reticulum (ER) stress, canopy homolog 2 (CNPY2), was investigated in mouse and human hepatocarcinogenesis. Firstly, a sensitive quantitative and qualitative detection of protein expression using QSTAR Elite LC-Ms/Ms was performed for the analysis of lysates of microdissected hepatocellular altered foci (AF), adenomas (HCAs), carcinomas (HCCs) and peritumoral livers from C57Bl/6J mice treated with diethylnitrosamine (DEN) and then maintained for 27 or 38 weeks on basal diet. Significant overexpression of 18.5 kDa CNPY2 processed form was demonstrated in AF, HCAs and HCCs, while low expression was observed in the livers of DEN-treated and control mice. Furthermore, CNPY2 elevation in AF and tumors was coordinated with accumulation of numerous cytoskeletal proteins, including cytokeratins 8 and 18, actin, non-muscle myosin and septin 9 and those involved in ER and mitochondrial stresses such as calreticulin, prohibitins 1 and 2 and YME1-like-1. Knockdown of CNPY2 in Huh7 and HepG2 human liver cancer cells resulted in significant suppression of cell survival and invasive potential, inhibition of cyclin D1, induction of p21Waf1/Cip1 and suppression of the apoptosis inhibitor Bcl2. In contrast, transfection of a mouse CNPY2 (mCNPY2-Ds-Red) vector plasmid in Huh7 and HepG2 cancer cells, with subsequent accumulation of CNPY2 in the ER, resulted in significant increase in cancer cells survival. Clinicopathological analysis in 90 HCV-positive HCC patients, revealed significant association of CNPY2 overexpression with poor overall (p = 0.041) survival. Furthermore, CNPY2 increase was associated with vessel invasion (p = 0.038), poor histological differentiation (p = 0.035) and advanced clinical stage (p = 0.016). In conclusion, CNPY2 is a promising molecular target elevated early in hepatocarcinogenesis and prognostic marker for human HCV-associated HCC. CNPY2 is involved in the processes of ER stress, cell cycle progression, proliferation, survival and invasion of liver tumor cells.

KW - CNPY2

KW - Hepatocarcinogenesis

KW - Human

KW - Mice

KW - Molecular target

KW - Prognostic marker

KW - ACTIVATION

KW - PROTEIN

KW - hepatocarcinogenesis

KW - IDENTIFICATION

KW - COMBINATION

KW - mice

KW - molecular target

KW - prognostic marker

KW - CARCINOMA CELL-LINE

KW - HEPATOCELLULAR-CARCINOMA

KW - ELECTROPHORESIS

KW - human

KW - EXPRESSION

KW - MICRODISSECTION

UR - http://www.scopus.com/inward/record.url?scp=85110264102&partnerID=8YFLogxK

U2 - 10.3390/cancers13143613

DO - 10.3390/cancers13143613

M3 - Article

AN - SCOPUS:85110264102

VL - 13

JO - Cancers

JF - Cancers

SN - 2072-6694

IS - 14

M1 - 3613

ER -

ID: 89838872