Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
Calculation of vibrational relaxation times in carbon dioxide using forced harmonic oscillator model. / Kustova, E.; Mekhonoshina, M.
International Conference on the Methods of Aerophysical Research, ICMAR 2020. ред. / Vasily M. Fomin; Alexander Shiplyuk. American Institute of Physics, 2021. стр. 96-97 040031 (AIP Conference Proceedings; Том 2351).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
}
TY - GEN
T1 - Calculation of vibrational relaxation times in carbon dioxide using forced harmonic oscillator model
AU - Kustova, E.
AU - Mekhonoshina, M.
N1 - Publisher Copyright: © 2021 Author(s). Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/5/24
Y1 - 2021/5/24
N2 - The study is devoted to the evaluation of vibrational relaxation times in carbon dioxide using the kinetic theory methods. There are several relaxation channels in CO2, such as vibrational-translational energy transitions within modes and vibrational-vibrational exchanges between different modes. The theoretical expressions for the relaxation times of such processes are derived; they depend on the energy variation in a specific collision and cross sections of corresponding transitions. The first-order perturbation theory as well as two modifications of the forced harmonic oscillator (FHO) model are implemented for the transition probabilities. Relaxation times are evaluated in the temperature range 500-10000 K; it is shown that they are strongly affected by the cross section model. It is found that the FHO model provides good agreement with experimental data at low and moderate temperatures; at high temperatures, both models give non-monotonic trends for the relaxation times. The reasons of such behaviour are analysed.
AB - The study is devoted to the evaluation of vibrational relaxation times in carbon dioxide using the kinetic theory methods. There are several relaxation channels in CO2, such as vibrational-translational energy transitions within modes and vibrational-vibrational exchanges between different modes. The theoretical expressions for the relaxation times of such processes are derived; they depend on the energy variation in a specific collision and cross sections of corresponding transitions. The first-order perturbation theory as well as two modifications of the forced harmonic oscillator (FHO) model are implemented for the transition probabilities. Relaxation times are evaluated in the temperature range 500-10000 K; it is shown that they are strongly affected by the cross section model. It is found that the FHO model provides good agreement with experimental data at low and moderate temperatures; at high temperatures, both models give non-monotonic trends for the relaxation times. The reasons of such behaviour are analysed.
UR - http://www.scopus.com/inward/record.url?scp=85107227230&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/4c978383-40c5-315f-a817-da91f1349675/
U2 - 10.1063/5.0052238
DO - 10.1063/5.0052238
M3 - Conference contribution
AN - SCOPUS:85107227230
T3 - AIP Conference Proceedings
SP - 96
EP - 97
BT - International Conference on the Methods of Aerophysical Research, ICMAR 2020
A2 - Fomin, Vasily M.
A2 - Shiplyuk, Alexander
PB - American Institute of Physics
T2 - 20th International Conference on the Methods of Aerophysical Research, ICMAR 2020
Y2 - 1 November 2020 through 7 November 2020
ER -
ID: 70965475