Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Boundedness of a variation of the positive harmonic function along the normals to the boundary. / Mozolyako, P.; Havin, V. P.
в: St. Petersburg Mathematical Journal, Том 28, № 3, 01.01.2017, стр. 345-375.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Boundedness of a variation of the positive harmonic function along the normals to the boundary
AU - Mozolyako, P.
AU - Havin, V. P.
PY - 2017/1/1
Y1 - 2017/1/1
N2 - Let u be a positive harmonic function on the unit disk. Bourgain showed that the radial variation of u is finite for many points θ, and moreover, that the set is dense in the unit circle T and its Hausdorff dimension equals one. In the paper, this result is generalized to a class of smooth domains in Rd, d ≥ 3.
AB - Let u be a positive harmonic function on the unit disk. Bourgain showed that the radial variation of u is finite for many points θ, and moreover, that the set is dense in the unit circle T and its Hausdorff dimension equals one. In the paper, this result is generalized to a class of smooth domains in Rd, d ≥ 3.
KW - Bourgain points
KW - Mean variation
KW - Normal variation
KW - Positive harmonic functions
UR - http://www.scopus.com/inward/record.url?scp=85017122151&partnerID=8YFLogxK
U2 - 10.1090/spmj/1454
DO - 10.1090/spmj/1454
M3 - Article
AN - SCOPUS:85017122151
VL - 28
SP - 345
EP - 375
JO - St. Petersburg Mathematical Journal
JF - St. Petersburg Mathematical Journal
SN - 1061-0022
IS - 3
ER -
ID: 119109314